Приведите примеры конвекции: Приведите примеры конвекции и теплопроводности(каждого по 10 примеров)

Примеры теплообмена в природе и технике

1. Ветры. Все ветры в атмосфере представляют собой конвекционные потоки огромного масштаба. Конвекцией, например, объясняются бризы — ночные и дневные ветры, возникающие на берегах морей и больших озер.

В летние дни суша прогревается солнцем быстрее, чем вода, поэтому и воздух над сушей нагревается больше, чем над водой. При этом воздух над сушей расширяется, после чего его давление становится меньше давления более холодного воздуха над морем. В результате, как в сообщающихся сосудах, холодный воздух по низу с моря (где давление больше) перемещается к берегу (где давление меньше) — дует ветер. Это и есть дневной (или морской) бриз.

Ночью вода охлаждается медленнее, чем суша, и над сушей воздух становится более холодным, чем над водой. Теперь более высокое давление оказывается над сушей, и потому воздух начинает перемещаться от берега к морю. Это ночной (или береговой) бриз.

2. Тяга. Мы знаем, что без притока свежего воздуха горение топлива невозможно. Если в топку или печь не будет поступать воздух, то горение прекратится. Для поддержания горения часто используют естественный приток воздуха — тягу. При этом над местом горения топлива устанавливают трубу. Нагреваясь, воздух расширяется, и давление в топке и трубе становится меньше давления наружного воздуха. Вследствие разницы давлений холодный воздух устремляется извне в топку, а теплый поднимается вверх по трубе. Это и есть тяга.

С увеличением высоты трубы тяга усиливается, так как, чем выше труба, сооруженная над топкой, тем больше разница давлений наружного воздуха и воздуха в трубе.

3. Водяное отопление. Жители стран, расположенных в умеренных и холодных поясах Земли, вынуждены обогревать свои жилища в холодную погоду. В жилых помещениях наиболее благо приятной для человека считается температура 18—20 °С. Для поддержания такой температуры во многих домах применяют водяное отопление.

Нагревание воды в системах центрального отопления происходит за пределами отапливаемого помещения (в котельных или теплоэлектроцентралях — ТЭЦ). От нагревателя горячая вода по трубопроводам поступает в здания. Здесь (рис. 71) она по главному стояку 1 поднимается вверх, а оттуда — по трубам в отопительные приборы (радиаторы 2). По мере охлаждения в них вода возвращается вниз и снова поступает к нагревателю. Так осуществляется непрерывная циркуляция воды по всей системе. В небольших зданиях эта циркуляция возникает благодаря естественной конвекции, а в больших городских домах она происходит за счет действия специальных насосов (искусственная или принудительная конвекция).

Для предотвращения разрушения отопительной системы (в результате увеличения давления при расширении нагреваемой жидкости) главный стояк 1 снабжают расширительным баком 3.

4. Термос. Теплопередача от более нагретого тела к более холодному приводит к выравниванию их температур. Поэтому, например, горячий чайник, снятый с плиты, при соприкосновении с окружающим воздухом через некоторое время остывает. Чтобы помешать телу остывать (или нагреваться), нужно предотвратить возможный теплообмен, причем во всех его трех проявлениях (при конвекции, теплопроводности и излучении). Это достигается путем помещения тела в специальный сосуд — сосуд Дьюара, который был изобретен в 1892 г. английским ученым Джеймсом Дьюаром.

Сосуды Дьюара вначале применялись лишь для хранения легкоиспаряюшихся сжиженных газов (например, жидкого гелия). Впоследствии их стали применять и в бытовых целях — для сохранения при неизменной температуре помещаемых в них пищевых продуктов. Такие сосуды Дьюара стали называть термосами (рис. 72).

Устройство термоса, предназначенного для хранения жидкостей, показано на рисунке 73. Он состоит из стеклянного сосуда 4 с двойными стенками. Внутренняя поверхность этих стенок покрыта блестящим металлическим слоем, а из пространства между стенками выкачан воздух.

Чтобы защитить стеклянный корпус термоса от повреждений, его помещают в картонный или металлический футляр 3. Сосуд закупоривают пробкой 2, а сверху футляра навинчивают колпачок 1.

Термос устроен таким образом, что теплообмен его содержимого с окружающей средой сведен до минимума. Отсутствие воздуха между его стенками препятствует переносу энергии путем конвекции и теплопроводности, а блестящий слой па внутренней поверхности термоса препятствует передаче энергии излучением.

1. Почему дневной бриз дует с моря в сторону берега, а ночной бриз — с берега в сторону моря? 2. В результате чего возникает тяга? 3. Как устроена система водяного отопления? 4. Расскажите об устройстве термоса. За счет чего в нем удается уменьшить теплообмен? Почему пища в термосе все-таки охлаждается?

Виды теплопередачи. Примеры теплопередачи в природе и технике

Тема: Виды теплопередачи. Примеры теплопередачи в природе и технике.

Цели урока: Познакомить учащихся с видами теплопередачи. Научить их объяснять тепловые явления на основании молекулярно–кинетической теории. Углубить знания учащихся о видах теплопередачи и их роли в природе и технике. Рассмотреть примеры использования видов теплопередачи в различных областях человеческой деятельности.

Демонстрации:

1. Перемещение тепла по спицам из различных металлов;

2. вращение вертушки над горящей лампой;

3. термоскоп;

4. слайд–шоу.

Ход урока:

I. Проверка усвоения изученного материала (фронтальный опрос).

Вопросы для проверки:

1)  Какими способами можно изменить внутреннюю энергию тела?

О т в е т: Совершая механическую работу или теплопередачей.

2)  Расскажите о процессе нагревания металлической ложки, погруженной в горячую воду.

О т в е т: Кинетическая энергия молекул горячей воды больше кинетической энергии частиц ложки.

Молекулы воды будут передавать часть своей кинетической энергии частицам ложки. В результате этого энергия молекул воды в среднем будет уменьшаться, а энергия частиц ложки будет увеличиваться. Температура воды уменьшиться, а температура ложки – увеличится. Через определенное время их температуры сравняются.

3)  Какой процесс называют теплопередачей?

О т в е т: Процесс изменения внутренней энергии без совершения работы над телом или самим телом.

4)  Приведите примеры увеличения (уменьшения) внутренней энергии тела при совершении над ним (или этим телом над другими телами) механической работы.

О т в е т: При деформации тел (ударах, сгибании, разгибании, сжатии и т. д.) их внутренняя энергия увеличивается. Сжатый газ совершает работу, выталкивая пробку из сосуда, при этом внутренняя энергия газа уменьшается.

5)  В теплую комнату внесли с улицы бутыль, закрытую пробкой. Через некоторое время пробка выскочила из бутыли. Почему?

О т в е т: В теплой комнате температура воздуха, находящегося под пробкой, со временем увеличивается, при этом давление воздуха повышается и это приводит к выталкиванию пробки.

6)  Почему при обработке детали напильником деталь и напильник нагреваются?

О т в е т: Над телами совершается работа силы трения, при этом их внутренняя энергия увеличивается, а значит и температура тел повышается.

II. Изучение нового материала.

План изложения нового материала:

1.  Теплопроводность. Примеры в природе и технике.

2.  Явление конвекции в жидкостях и газах. Примеры в природе и технике.

3.  Излучение. Примеры в природе и технике.

4.  Примеры теплообмена в быту.

Начало слайд-шоу по новой теме.

Формулировка темы урока (слайд 1).

Мы уже знаем, что внутреннюю энергию можно изменить двумя способами: путем совершения работы и путем теплопередачи (теплообмена).

Изменение внутренней энергии посредством теплопередачи может производиться по-разному.

Различают три вида теплопередачи: теплопроводность, конвекция и излучение или лучистый теплообмен. (Показ слайда 2).

Демонстрация опыта (опытная установка изображена на слайде 3 и рис. 6, стр. 11 учебника).

Определение теплопроводности (слайд 4):

1. Теплопроводность – явление передачи внутренней энергии от одного тела к другому или от одной его части к другой. В этом случае тела и все части, участвующие в процессе, находятся в непосредственном контакте.

Само вещество не перемещается вдоль тела – переносится лишь энергия

Объяснение механизма теплопроводности (слайд 5).

Показ сравнительных рисунков по теплопроводностям различных веществ (слайд 6) и теплоизоляционных материалов (слайд 7).

Примеры теплопроводности в природе (слайды 8,9) и технике (слайд 10).

Демонстрация опыта (опытная установка изображена на слайде 11 и рис. 10, 11, стр. 14 учебника).

Определение конвекции (слайд 12):

2. Конвекция (от лат. конвекцио – перенесение) – перенос энергии самими струями газа или жидкости.

Этот вид теплопередачи не является чисто тепловым процессом, так как перемешивание слоев газа или жидкости всегда связано с какими-то внешними, нетепловыми причинами.

Конвекция в твердых телах и вакууме происходить не может.

Объяснение механизма конвекции в газах (слайд 13).

Объяснение понятия тяги и природы её возникновения (слайд 14).

Объяснение механизма конвекции в жидкостях (слайд 15).

Примеры конвекции в природе (слайды 16-18) и технике (слайд 19).

Демонстрация опыта, установка которого изображена на рис. 13, стр. 17 учебника.

Определение излучения (лучистого теплообмена) (слайд 21).

3. Излучение – это теплопередача, при которой энергия переносится различными лучами.

Объяснения механизма излучения (слайды 22, 23).

В этом случае перенос энергии осуществляется посредством электромагнитных волн, с физической природой которых мы ознакомимся позднее. Излучение не нуждается в каких-либо иных посредниках.

Излучение может распространяться и в вакууме (например, Солнечное излучение).

Темные тела лучше поглощают излучение и быстрее нагреваются, чем светлые. Темные тела быстрее охлаждаются.

Примеры излучения в природе (слайд 24) и технике (слайд 25).

4. Примеры теплообмена в быту. Показ слайдов 27-33.

III. Закрепление изученного материала.

Вопросы и задания по изученному сегодня материалу:

Заполните схему (слайд 35).

О т в е т:

Ответьте на следующие вопросы: (Слайды 37-46).

1. Почему вы обжигаете губы, когда пьёте чай одинаковой температуры из металлической кружки, и не обжигаете, когда пьёте чай из фарфоровой кружки?

О т в е т. Металлическая кружка по сравнению с фарфоровой нагревается сильнее, вследствие высокой теплопроводности металла по сравнению с фарфором.

2. Почему ручки чайников, кастрюль делают из пластмассы или дерева?

О т в е т. Пластмасса и дерево имеют низкую теплопроводность. Такие ручки предохраняют руки человека от ожога.

3. Почему нагретая сковорода охлаждается в воде быстрее, чем на воздухе?

О т в е т. Вода обладает большей теплопроводностью, чем воздух.

4. Почему в безветрие пламя свечи устанавливается вертикально?

О т в е т. Металлы обладают большей теплопроводностью. Горячие газы, двигаясь вверх по металлической трубе, охлаждаются быстрее, нежели при движении по кирпичной трубе. Плотность газов увеличивается, разность давлений в трубе и вне ее уменьшается, уменьшается и тяга.

5. Где и почему именно там размещают батареи в помещениях?

О т в е т. Батареи находятся ниже окон, для того, чтобы согревать холодный воздух, выходящий из окна. Благодаря конвекции теплый слой воздуха поднимается вверх и обогревается всё помещение.

6. Зачем самолёты красят «серебряной» краской?

О т в е т. Для меньшего нагревания или охлаждения корпуса самолёта.

7. Почему грязный снег в солнечную погоду тает быстрее, чем чистый?

О т в е т. Темные тела лучше поглощают излучение Солнца и потому быстрее нагреваются.

8. Какой из изображенных чайников быстрее остынет?

О т в е т. Быстрее остынет черный чайник, так как темные тела быстрее охлаждаются.

9. Посмотрите на рисунок. Почему одному мальчику жарко, а другому нет?

О т в е т. Один из мальчиков одет в темную футболку, хорошо поглощающую солнечной энергии, и ему жарко. А другой одет в светлую футболку, которая плохо поглощает энергию Солнца.

10. Почему зимой тяга в печных трубах больше, чем летом?

О т в е т. При условии неизменности высоты трубы тяга в ней тем сильнее, чем больше различаются давления на уровне основания трубы горячего воздуха в трубе и более холодного наружного воздуха. С понижением температуры наружного воздуха (зимой) его плотность возрастает, возрастает и его давление. Таким образом, тяга в печных трубах зимой больше, чем летом.

Придумайте опыт по рисунку и объясните наблюдаемое явление. (Слайд 47).

О т в е т. Берем два стержня, имеющих различные теплопроводности материалов из которых они изготовлены, например, деревянный стержень и медный. Ближе к одному из концов стержней крепим на стержни (через небольшие промежутки) с помощью воска несколько гвоздей. Стержни с закрепленными гвоздями помещаем свободными концами в стакан с горячей водой. Через определенное время гвозди, закрепленные на медном стержне, начнут падать, начиная снизу. Медный стержень имеет очень хорошую теплопроводность. Гвозди, закрепленные на деревянном стержне, не будут падать, так как дерево плохо проводит тепло.

Показ слайда 49 на закрепление изученных видов теплопередачи.

Домашнее задание: (Слайд 50) §§ 4-6. Упр. 2, 3. Кроссворд. (Слайд 51)




Приведите примеры разных видов теплопередачи:теплопроводимости ,конвекции,излучения .

ТЕПЛОПЕРЕДАЧА (либо термообмен) — один из способов конфигурации внутренней энергии тела (либо системы тел) , при этом внутренняя энергия 1-го тела перебегает во внутреннюю энергию иного тела без совершения механической работы.
Термообмен меж 2-мя средами происходит через разделяющую их твердую стену или через поверхность раздела меж ними.
Теплота способна перебегать только от тела с более высочайшей температурой к телу менее подогретому.
Теплообмен всегда протекает так, что убыль внутренней энергии одних тел всегда сопровождается таким же приращением внутренней энергии иных тел, участвующих в термообмене.
Существует три вида теплопередачи: теплопроводимость, конвекция и излучение.

Теплопроводимость — перенос энергии от более нагретых участков тела к менее нагретым в итоге термического движения и взаимодействия микрочастиц (атомов, молекул, ионов и т. п.) .
Приводит к выравниванию температуры тела. Не сопровождается переносом вещества!
Этот вид передачи внутренней энергии отличителен как для твердых веществ, так и для жидкостей, газов.
Теплопроводность различных веществ различная.
Существует зависимость теплопроводности от плотности вещества.

КОНВЕКЦИЯ — это перенос энергии струями воды либо газа.
Конвекция происходит за счет смешивания вещества водянистой или газообразной среды.
Конвекция невероятна в твёрдых телах.
Существует зависимость скорости конвекции от плотности вещества и от разницы температур соприкасающихся тел.
Конвекция может быть природной и принудительной, к примеру, с помощью вентилятора.

ИЗЛУЧЕНИЕ
Все окружающие нас предметы источают тепло в той либо другой мере. Излучая энергию, тела остывают.
Чем выше температура тела, тем лучше тепловое излучение.
Термическое (инфракрасное) излучение не воспринимается глазом.
Теплопередача методом излучения возможна в любом веществе и в вакууме.
Тела способны не только источать, но и поглощать тепловое излучение, при этом они греются.
Черные тела лучше поглощают излучение, чем ясные либо имеющие зеркальную, либо полированную поверхность, и лучше излучают.
Как фантастично смотрелся бы окружающий мир, если бы мы могли созидать труднодоступные нашему глазу термические излучения других тел!
Пар газообразное состояние вещества в условиях, когда газовая фаза может находиться в равновесии с жидкой или твёрдой фазами того же вещества. Процесс происхождения пара из жидкой (твёрдой) фазы называется парообразованием . Оборотный процесс величается конденсация. При низких давлениях и высоких температурах характеристики пара приближаются к свойствам образцового газа. В разговорной речи под словом пар почти всегда разумеют водяной пар. Пары иных веществ оговариваются в явном виде

Теплообмен

Теплообмен — это процесс изменения внутренней энергии без совершения работы над телом или самим телом.
Теплообмен всегда происходит в определенном направлении: от тел с более высокой температурой к телам с более низкой.
Когда температуры тел выравниваются, теплообмен прекращается.
Теплообмен может осуществляться тремя способами:

  1. теплопроводностью
  2. конвекцией
  3. излучением

Теплопроводность

Теплопроводность — явление передачи внутренней энергии от одной части тела к другой или от одного тела к другому при их непосредственном контакте.
Наибольшей теплопроводностью обладают металлы — она у них в сотни раз больше, чем у воды. Исключением являются ртуть и свинец, но и здесь теплопроводность в десятки раз больше, чем у воды.
При опускании металлической спицы в стакан с горячей водой очень скоро конец спицы становился тоже горячим. Следовательно, внутренняя энергия, как и любой вид энергии, может быть передана от одних тел к другим. Внутренняя энергия может передаваться и от одной части тела к другой. Так, например, если один конец гвоздя нагреть в пламени, то другой его конец, находящийся в руке, постепенно нагреется и будет жечь руку.
Нагревание кастрюли на электрической плитке происходит через теплопроводность.
Изучим это явление, проделав ряд опытов с твердыми телами, жидкостью и газом.
Внесем в огонь конец деревянной палки. Он воспламенится. Другой конец палки, находящийся снаружи, будет холодным. Значит, дерево обладает плохой теплопроводностью.
Поднесем к пламени спиртовки конец тонкой стеклянной палочки. Через некоторое время он нагреется, другой же конец, останется холодным. Следовательно, и стекло имеет плохую теплопроводность.
Если же мы будем нагревать в пламени конец металлического стержня, то очень скоро весь стержень сильно нагреется. Удержать его в руках мы уже не сможем.
Значит, металлы хорошо проводят тепло, т. е. имеют большую теплопроводность. Наибольшей теплопроводностью обладают серебро и медь.
Теплопроводность у различных веществ различна.
Плохой теплопроводностью обладают шерсть, волосы, перья птиц, бумага, пробка и другие пористые тела. Это связано с тем, что между волокнами этих веществ содержится воздух. Самой низкой теплопроводностью обладает вакуум (освобожденное от воздуха пространство). Объясняется это тем, что теплопроводность — это перенос энергии от одной части тела к другой, который происходит при взаимодействии молекул или других частиц. В пространстве, где нет частиц, теплопроводность осуществляться не может.
Если возникает необходимость предохранить тело от охлаждения или нагревания, то применяют вещества с малой теплопроводностью. Так, для кастрюль, сковородок ручки из пластмассы. Дома строят из бревен или кирпича, обладающих плохой теплопроводностью, а значит, предохраняют от охлаждения.

Конвекция

Конвекция — это процесс теплопередачи, осуществляемый путем переноса энергии потоками жидкости или газа.
Пример явления конвекции: небольшая бумажная вертушка, поставленная над пламенем свечи или электрической лампочкой, под действием поднимающегося нагретого воздуха начинает вращаться. Это явление можно объяснить таким образом. Воздух, соприкасаясь с теплой лампой, нагревается, расширяется и становится менее плотным, чем окружающий его холодный воздух. Сила Архимеда, действующая на теплый воздух со стороны холодного снизу вверх, больше, чем сила тяжести, которая действует на теплый воздух. В результате нагретый воздух «всплывает», поднимается вверх, а его место занимает холодный воздух.
При конвекции энергия переносится самими струями газа или жидкости.
Различают два вида конвекции:

  • естественная (или свободная)
Возникает в веществе самопроизвольно при его неравномерном нагревании. При такой конвекции нижние слои вещества нагреваются, становятся легче и всплывают, а верхние слои, наоборот, остывают, становятся тяжелее и опускаются вниз, после чего процесс повторяется.
Наблюдается при перемешивании жидкости мешалкой, ложкой, насосом и т. д.
Для того, чтобы в жидкостях и газах происходила конвекция, необходимо их нагревать снизу.
Конвекция в твердых телах происходить не может.

Излучение

Излучение — электромагнитное излучение, испускаемое за счет внутренней энергии веществом, находящимся при определенной температуре.
Мощность теплового излучения объекта, удовлетворяющего критериям абсолютно черного тела, описывается законом Стефана — Больцмана.
Отношение излучательной и поглощательной способностей тел описывается законом излучения Кирхгофа.
Передача энергии излучением отличается от других видов теплопередачи: она может осуществляться в полном вакууме.
Излучают энергию все тела: и сильно нагретые, и слабо, например тело человека, печь, электрическая лампочка и др. Но чем выше температура тела, тем больше энергии передает оно путем излучения. При этом энергия частично поглощается этими телами, а частично отражается. При поглощении энергии тела нагреваются по-разному, в зависимости от состояния поверхности.
Тела с темной поверхностью лучше поглощают и излучают энергию, чем тела, имеющие светлую поверхность. В то же время тела с темной поверхностью охлаждаются быстрее путем излучения, чем тела со светлой поверхностью. Например, в светлом чайнике горячая вода дольше сохраняет высокую температуру, чем в темном.


Другие заметки по физике

Конспект урока «Виды теплопередачи. Примеры теплопередачи в природе и технике» (8 класс)

8 класс

Раздел: Тепловые явления.

Обобщение темы: «Виды теплопередачи. Примеры теплопередачи в природе и технике»

Цели и задачи урока:

  1. Обобщение материала по теме: «Виды теплопередачи».

  2. Проверить умения и навыки учащихся на тестовых заданиях решать задачи по данной теме.

  3. Научить видеть проявления изученных закономерностей в окружающей жизни, расширить представления учащихся о физической картине мира на примере теплопередачи в природе и технике, расширить кругозор учащихся.

  4. Научить самостоятельности мышления, умению выступать перед большой аудиторией.

  5. Развивать у учащихся активную учебную деятельность, умение сравнивать и анализировать полученные знания. Развивать коммуникативные способности, устную речь учащихся; расширить познавательный интерес учащихся.

6. Научить пользоваться информационными средствами и обрабатывать добытый материал.

Предварительная подготовка:

— класс разбит на группы. Каждая группа работает по определённой теме.Время работы 2 недели. Идёт подбор материалов для создания презентации, проекта из различных источников информации (дополнительная литература, Интернет-ресурсы). Некоторые учащиеся, по желанию, работают индивидуально.

— создание презентации, проекта. Консультации.

-предварительная защита работы.

Формы и методы работы:

— вводная беседа;

— фронтальный опрос;

— презентация (проект)

— промежуточный контроль в форме тестового опроса;

— анализ и корректировка знаний;

— в качестве дополнительного иллюстративного материала показ анимации и интерактивных моделей «Теплопередача», «Изучение различной теплопроводности материалов», «Дневной и ночной бризы».

Ресурсы и материалы:

  1. Компьютер.

  2. Мультимедийный проектор.

  3. Диск с анимациями.

Программа: Microsoft Office PowerPoint 2003.

ПЛАН УРОКА:

  1. Введение.-1 мин.

  2. Физическая атака -10 мин.: повторение теоретического материала.

  3. Обобщение пройденного материала -15 мин. (работы учеников, анимации).

  4. Выполнение тестового задания – 8 мин. (2 варианта).

  5. Проверка результатов -4 мин.

  6. Итог урока. Рефлексия -5 мин.

  7. Задание на дом -2 мин.

ХОД УРОКА.

1. Введение.

2. Физическая атака – (теоретический опрос).

3. Обобщение темы «Виды теплопередачи»:

1) защита лучшего ученического проекта или презентации– (виды теплопередачи) -1 пример.

2) показ анимации и интерактивных моделей «Теплопередача», «Изучение различной теплопроводности материалов», «Дневной и ночной бризы».

Примеры:



4. Выполнение тестовых заданий. Используется компьютерный вариант – тесты – (проверочная работа).

5. Проверка тестов (производится самопроверка или можно сделать проверку, поменявшись с соседом работами).

Обеспечение быстрой проверки, а самое главное, каждый ученик имеет возможность тут же узнать результат своей работы и то, на какие вопросы ему необходимо обратить внимание.

  1. Итог урока. Рефлексия.

Что ж, наш урок подходит к завершению. В той атмосфере и обстановке, в которой мы сегодня работали, каждый из вас чувствовал себя по-разному. И сейчас мне бы хотелось, чтобы вы оценили, какая часть урока была самой интересной (высказывания учащихся).

Решать загадки можно вечно.

Вселенная ведь бесконечна.

Спасибо всем нам за урок,

А главное, чтоб был он впрок!

Мне очень понравилось с вами работать. А теперь давайте подведем итоги вашей работы на сегодняшнем уроке (выставление оценок).

7. Задание на дом: §1, стр.178. Изобразить на бумаге физические явления, наблюдавшиеся и обсуждавшиеся на уроке, можно в веселых картинках, комиксах

Список литературы:

  1. Прояненкова Л.А., Стефанова Г.П., Крутова И.А. Уроки физики по теме «Тепловые явления». Астрахань, 2003.

  2. М.Е. Тульчинский. Качественные вопросы и задачи по физике.

  3. Учебник физики 8 кл. Перышкин А.В.

  4. В.Н. Ланге. Экспериментальные задачи по физике на смекалку.

  5. А.В.Усова. Методика преподавания физики в 7-8 классах.

  6. А.Е.Марон, Е.Ф.Марон. Дидактический материал по физике. 8 класс.

Конвекция. Примеры конвекции в природе и технике

Цели урока:

  1. Проверить усвоение учащимися материала по первому виду переноса энергии- теплопроводности.
  2. Повторить понятия плотности, силы тяжести, архимедовой силы и вопросы различия в молекулярном строении твердых тел, жидкостей и газов.
  3. Познакомить учащихся с явлением конвекции и его объяснением.
  4. Дать понятия свободной и вынужденной конвекции.
  5. Рассмотреть примеры конвекции в природе и технике.

Форма урока:

Поисковая беседа.

Оборудование:

Вертушка, электроплитка, экран, проектор, горелка, сухое горючее, колба с водой, кристаллики краски, две пробирки, заполненные водой и воздухом, изображение схемы водяного отопления здания.

Ход урока

I. Организация класса.

II. Фронтальное повторение с целью подготовки учащихся к восприятию нового материала и выявления качества усвоения ими материала по теплопроводности.

Опрос

  1. Что такое плотность вещества? В каких единицах она измеряется?
  2. Как расположатся в закрытом сосуде следующие вещества: вода, воздух, спирт, ртуть? Почему?
  3. Что называют силой тяжести? В каких единицах ее измеряют?
  4. Что такое архимедова сила? Где она возникает? От чего зависит ее величина?
  5. Чем отличаются движения молекул в твердом теле, жидкости и газе?
  6. Какую энергию называют внутренней?
  7. Какими способами можно изменить внутреннюю энергию тела?
  8. Что понимают под теплопередачей?
  9. С каким видом теплопередачи мы познакомились на прошлом уроке?

Один из учеников с места рассказывает о теплопроводности.

Дополнительные вопросы.

  1. Почему в строительной технике широко используют пористый материал?
  2. Что называют тепловым движением?

Второй ученик с места рассказывает о теплопроводности различных веществ.

Дополнительные вопросы.

  1. Для чего зимой на радиаторы автомобилей надевают утеплительные чехлы?
  2. Что называют внутренней энергией тела?

Третий ученик отвечает по карточке.

  1. Почему старое зимнее пальто со сбившейся в комки ватой плохо греет?
  2. Быстродвижущийся автомобиль остановлен тормозами. Куда девалась при этом его кинетическая энергия?
  3. Зависит внутренняя энергия тела от движения тела или от положения этого тела?

Четвертый ученик (по карточке)

  1. Почему алюминиевая кружка с чаем обжигает губы, а фарфоровая чашка с чаем нет?
  2. Почему наружные части сверхзвуковых самолетов приходится охлаждать при помощи специальных аппаратов?
  3. Что называют теплопередачей?

Пятый ученик (по карточке)

  1. Почему можно небольшую стеклянную палочку, накаленную с одного конца, держать за другой конец, не обжигая пальцев, а железный прут нельзя?
  2. Как надо поступить (отпустить нить или растянуть сильнее) с слегка растянутой резиновой нитью, чтобы ее внутренняя энергия увеличилась? Что называется теплопроводностью?

Шестой ученик (по карточке)

  1. Расскажите, основываясь на своих жизненных наблюдениях, чтоб служить защитой от зимних морозов различным животным и птицам. Какую роль при этом играет теплопроводность меха, перьевого покрова, подкожного жира и т.п.?
  2. Если к точильному камню прижать кусок стали, то сыплются искры. Каково их происхождение?
  3. Какую энергию называют внутренней энергией тела?

Седьмой ученик (по карточке)

  1. Какие их перечисленных веществ: бумага, солома, серебро, воздух, опилки- хорошие проводники тепла и плохие проводники тепла?
  2. Молоток будет нагреваться, когда им отбивают косу и когда он лежит на солнце в жаркий летний день. Назовите способы изменения внутренней энергии молотка в обоих случаях.
  3. Что называется тепловым движением?

Ответы учащихся должны быть полными, с объяснением.

Ответы комментируются и оцениваются. Оценки выставляются в дневники.

III. Изучение нового материала.

Пронаблюдаем интересное явление. Вертушка, помещенная над пламенем горелки, вращается.

Почему?

Учащиеся пытаются отвечать. Воздух нагрелся и расширился.

Может ли здесь тепло передаваться теплопроводностью?

Нет, так как воздух плохой проводник тепла.

Здесь мы наблюдаем иной вид теплопередачи, который называется конвекцией.

Конвекцией называется перенос энергии самими струями жидкости или газа.

Наблюдаем струи воздуха от той же горелки в проекции на экран.
Объяснение учителя (дважды).

Воздух, соприкасающийся с горелкой, нагревается и расширяется. Плотность расширившегося воздуха меньше, чем плотность холодного. Поэтому слой теплого воздуха всплывает в холодном воздухе. Ведь архимедова сила, действующая на теплый воздух со стороны холодного снизу вверх, больше, чем сила тяжести, действующая на теплый воздух, направленная вниз. Затем прогревается и начинает двигаться вверх следующий слой холодного воздуха и т.д. Перемещается само вещество.

А в каких веществах, кроме газа, может наблюдаться конвекция? Может ли она наблюдаться в твердых телах и жидкостях?

Почему?

Наблюдаем конвекцию в жидкостях на примере воды в колбе с опущенными в нее кристалликами краски и нагреваемой на электрической плитке.

Учащиеся повторяют объяснения учителя.

Итак, конвекцией называется перенос энергии самими струями жидкости или газа (записываем определение в тетрадях).

Затем уточняем понятия естественной или свободной и вынужденной конвекции.

А теперь думаем над вопросом:

Где надо расположить горелку, чтобы нагреть жидкость или газ?

Почему?

Посмотрим, что будет, если горелка располагается сверху. Наблюдаем опыт с пробирками, заполненными водой и воздухом нагреваемым сверху.

Нижние слои воздуха и воды холодные. Нет циркуляции. Нет конвекции.

Теплопроводность воздуха и воды мала. Поэтому придется долго ждать, пока воздух и вода прогреются.

Рассмотрим примеры конвекции в природе и технике.

  1. Ветры бризы, возникающие на берегах морей. В каком направлении дуют они в летние дни днем и ночью и почему?
    Отвечают учащиеся, так как они это изучали на уроках географии в 5 классе. Бриз — это движение холодного воздуха.
  2. Тяга. Что такое горение? Без чего не может быть горение?
    Отвечают учащиеся.
    Учитель рассказывает о предположении в 15 столетии Леонардо да Винчи использовать трубу (металлическую) для создания тяги. «Где появляется огонь, — говорил Леонардо да Винчи — там вокруг него образуется воздушное течение, оно его поддерживает и усиливает».
    Через 300 лет металлические трубы заменили в керосиновой лампе стеклянной, а на заводах — кирпичной.
    Как же создается тяга?
    Объясняет учитель. Чему выше труба, сооруженная над топкой, тем больше разница давлений наружного воздуха и воздуха в трубе. Поэтому тяга усиливается при увеличении высоты трубы.
  3. Центральное водяное отопление — примеры использования свободной или вынужденной конвекции. Рассматривается его устройство, рассказывается о ТЭЦ.

IV. Презентация «Конвекция»

Приложение 1

V. Закрепление.

  1. Что такое конвекция?
  2. В каких веществах ее можно наблюдать? В каких веществах она возможна?
  3. Как осуществляется конвекция в наших жилых комнатах?
  4. Где надо расположить лед: снизу или сверху, чтобы охладить продукты?

VI. Проверочный тест.

Ребята, вам предлагается ряд утверждений, среди которых как правильные, так и неверные. Прослушав высказывание, вы должны или согласиться с ним, или не согласиться. Если утверждение верное, то ставите знак «+» ,если утверждение неверное-ставите знак «-».

  1. При нагревании объем тела уменьшается, а при охлаждении увеличивается(-).
  2. Газ не имеет собственной формы и постоянного объема. Он полностью занимает весь предоставленный ему объем(+).
  3. Диффузия может происходить только в жидкостях или газах(-).
  4. Молекулы движутся только в жидкостях или газах, а в твердых телах покоятся(-).
  5. Теплопередача-это один из способов изменения внутренней энергии тела(+).
  6. Жидкость легко меняет свою форму(+).
  7. Конвекция возможна только в твердых телах и в газах(-).
  8. Конвекция играет основную роль в передаче тепла при нагревании воды в кастрюле, стоящей на плите(+).
  9. Нагревание и охлаждение воздуха в помещениях основано на конвекции(+).
  10. При увеличении температуры молекулы вещества увеличиваются в размере(-).

На дом: § 5, упр.2, В.И.Лукашик №971-974,979.

Домашнее задание комментируется. Обращается внимание на рисунок 12 и особенный интересный вопрос, стоящий в №979.

Межпредметные связи – с зоологией (см. вопрос шестому ученику), географией (6 класс, ветры бризы) и химией (8класс, горение).

Список использованной литературы

  1. А.В. Перышкин, Физика 8 кл.: Учебник для общеобразовательных учебных заведений – 3-е издание
  2. В.И. Лукашик, Е.В. Иванова, Сборник задач по физике для 7-9 классов общеобразовательных учреждений — 20-е издание
  3. Ю.В. Щербакова, Занимательная физика на уроках и внеклассных мероприятиях. 7-9 классы – 2-е издание
  4. Н.А. Якушевская, Повторение и контроль знаний по физике на уроках и внеклассных мероприятиях, 7-9 классы: диктанты, тесты, кроссворды, внеклассные мероприятия – 2-е издание
  5. Л.А. Кирик, Физика-8, Методические материалы

Теплопроводность. Просто о сложном. | Isobud

При выборе качественного теплоизоляционного материала потребитель должен принимать во внимание целый ряд параметров, среди которых неизменно присутствует показатель теплопроводности. Высокой или низкой должна быть теплопроводность, что такое «лямбда», на какие показатели теплопроводности ориентироваться – ответы на эти и другие самые распространенные вопросы, возникающие при покупке утеплителя, вы найдете в данной статье.

Слово «теплопроводность» или еще более запутанное «лямбда» знакомо каждому школьнику из курса физики за восьмой класс. Однако со временем информация, которой мы не пользуемся, забывается. Попробуем освежить в памяти эти несложные и очень полезные знания.

Теплопроводность, как уже было сказано выше — одно из ключевых понятий в современном строительстве, особенно когда речь заходит о теплоизоляционных материалах. От теплопроводности зависит толщина вашей стены или кровли, вес всего дома, а следовательно, и прочность (несущая способность) фундамента, долговечность конструкций и многое другое.

Современное определение теплопроводности – понятие комплексное. И состоит из нескольких составных частей, отвечающих за перенос тепла (теплообмен).

На первый взгляд формула кажется пугающей, но на самом деле все просто.

Суммарная или итоговая теплопроводность состоит из теплопроводности за счет конвекции, теплопроводности твердой и газообразной фазы, а также теплопроводности, учитывающей теплообмен за счет излучения.

Запутались еще сильнее? Тогда по порядку.

Разберем каждый элемент этой формулы более подробно.

Теплообмен (или теплопередача) – это способ изменения внутренней энергии без совершения работы над телом или самим телом.

Теплопередача всегда происходит в определенном направлении: от тел с более высокой температурой к телам с более низкой.

Из курса физики нам известно, что теплообмен включает в себя три вида передачи тепла: теплопроводность, конвекцию и излучение.

Теплопроводность — явление передачи внутренней энергии от одной части тела к другой или от одного тела к другому при их
непосредственном контакте.

Если вы опустите ложку в стакан с горячим напитком, нагреется не только та часть ложки, которая погружена в жидкость, но и та ее часть, которая находится над водой.

Теплопроводность различных веществ неодинакова, она может быть плохой (низкой) и хорошей (высокой). Хорошая теплопроводность у металлов. Плохая — у шерсти, дерева и пластиков. Самым плохим проводником тепла является вакуум.

Для примера вспомните кухонную посуду: кастрюли и сковородки. Вы вряд ли станете снимать металлическую кастрюлю, полную вкусного супа, с горячей плиты голыми руками, потому что существует реальная опасность обжечь руки. Вместо этого вы используете кухонное полотенце, силиконовые или тряпичные прихватки, то есть те материалы, которые плохо проводят тепло.

Именно поэтому «правильные» кастрюли и сковородки снабжены пластмассовыми или деревянными ручками, плохо проводящими тепло. Вспомнить хотя бы старую бабушкину сковородку с деревянной ручкой: сковородка горячая, а за ручку схватиться можно безо всяких прихваток.

Как объясняется это явление? Рассмотрим на примере нагревания металлического стержня (или ложки из примера со стаканом).

В металле, как и во всех твердых телах, молекулы совершают колебательные движения около некоторых положений равновесия. Скорость колебательного движения молекул металла при нагревании увеличивается в той части, которая ближе расположена к пламени или источнику тепла. Эти молекулы, взаимодействуя с соседними молекулами, передают им часть своей энергии. В результате чего повышается температура отрезка стержня. Затем увеличивается скорость колебательного движения молекул в следующих отрезках стержня и так далее, до тех пор, пока не прогреется весь стержень. Именно поэтому вакуум обладает самой плохой теплопроводностью: в нем практически отсутствуют молекулы, которые бы передавали энергию друг другу. Важно отметить, что сами молекулы, передавая кинетическую энергию, не меняют свое местоположение, то есть само вещество не перемещается.

С первым понятием разобрались, посмотрим, что же дальше.

Следующая составляющая теплопроводности – это конвекция. У многих из вас на слуху такой прибор, как «конвектор». А вот почему он так называется, наверное, знает далеко не каждый. Хотя логично предположить, что название свое он получил за принцип работы – конвекцию.

Из курса физики следует, что конвекция — это перенос энергии струями жидкости или газа. Если в случае с теплопроводностью при теплообмене происходит перенос энергии, то при конвекции происходит перенос именно вещества.

Конвекторы (как и любые другие отопительные приборы) нагревают окружающий воздух, вследствие чего температура в комнате повышается и вам становится тепло. При этом струи теплого воздуха поднимаются вверх, а струи холодного опускаются вниз. Аналогично происходит процесс нагревания воды в чайнике: горячая вода поднимается, а холодная опускается на ее место. Этот же принцип заложен в отопительной системе для обогрева домов.

Различают два вида конвекции: естественная и вынужденная.

Нагревание воздуха в комнате солнечными лучами – это пример естественной конвекции. А вот если воздух нагревается тепловым вентилятором, то это уже вынужденная конвекция. Вентилятор заставляет воздух в комнате двигаться, при этом нагревая его до необходимой температуры. В качестве других примеров конвекции можно привести холодные и теплые морские течения, а также образование и движение облаков и ветров.

Переходим к следующей составляющей: излучение (лучистый теплообмен).

Излучение – это способ переноса энергии от одного тела к другому в виде электромагнитных волн. Как правило, это инфракрасное (IR) излучение. Этот принцип заложен еще в одном уникальном приборе – инфракрасном обогревателе.

Принцип его работы построен на том, что любое нагретое тело является источником излучения. Самый впечатляющий пример – Солнце. Пример поменьше – костер, распространяющий тепло на достаточно большое расстояние. В случае с обогревателем окружающие предметы нагреваются за счет электромагнитного излучения и в комнате становится тепло.

Этот вид теплообмена отличается тем, что может происходить и в вакууме. Ведь солнечная энергия как-то доходит до Земли.

Примечательно, что темные тела лучше поглощают и отдают энергию. Если необходимо максимально нагреть материал, его окрашивают в черный цвет. В качестве примера можно привести солнечные коллекторы (водонагреватели), которые устанавливаются на крышах домов. Эти устройства позволяют собирать тепло от солнца и нагревать теплоноситель, который затем передает тепло внутрь дома для обогрева помещений или нагрева воды.

Хуже всего поглощают энергию светлые материалы или материалы с отражающей способностью. Способность светлых тел хорошо отражать лучистую энергию учитывают в самых разных сферах: при строительстве самолетов, при возведении высотных зданий в жарких странах, даже при выборе цвета одежды в теплое время года. На окнах часто применяют металлизированные пленки, которые частично отражают солнечное тепло и спасают помещение от перегрева.

С базовыми принципами разобрались. Пришло время вернуться к нашей формуле.

Итак, вернемся к теплопроводности.

Структурная и газовая теплопроводность – это теплопроводность компонентов, из которых состоит материал, а именно:

  • твердой фазы – теплопроводности полимерного каркаса с множеством ячеек с очень тонкими, но прочными стенками;
  • газообразной фазы – теплопроводность газа, который находится в ячейках.           

Если сравнивать теплоизоляцию PIR с пеностеклом или пенобетоном, то по структуре эти материалы схожи. Все они ячеистые и наполнены газом. Однако теплопроводности этих материалов будут отличаться.

Стекло и бетон, в отличие от пластиков, проводят тепло интенсивнее, соответственно, пеностекло и пенобетон обладают большей теплопроводностью и их показатели в качестве теплоизоляторов несколько хуже. Даже полимеры отличаются друг от друга теплопроводностью.

Как было сказано ранее, представленные материалы ячеистые и в каждом находятся какие-то газы. В пеностекле и пенобетоне это, как правило, окружающий воздух, в PIR – инертные газы. Хуже всего тепло проводят инертные газы, содержание молекул в 1 м3 очень маленькое, расстояние между молекулами очень большое, поэтому передать энергию между молекулами довольно сложно. Намного лучше тепло проводит воздух, поскольку он состоит из смеси разных газов, молекул очень много и все они друг с другом взаимодействуют.

Конвекционную составляющую у мелкоячеистой теплоизоляции обычно не рассматривают, поскольку размер ячеек теплоизоляции PIR ничтожно мал (меньше 1мм) и газ в этих ячейках неподвижен.

Последняя составляющая – излучение. Снизить ее влияние можно за счет применения дополнительных материалов, способных отражать тепловой поток. Для этого можно окрасить материал, скажем, в белый цвет. В случае с теплоизоляционными плитами PIR за отражение тепла отвечает фольга, которая покрывает материал с обеих сторон. Помимо функции отражения тепла фольга также несет защитную функцию с точки зрения утечки вспенивающего газа. По своим свойствам фольга является практически идеальным пароизоляционным материалом, а значит, способна задерживать миграции газов во внешнюю среду из ячеек теплоизоляции.

В процессе эксплуатации легкие инертные газы замещаются на более тяжелый окружающий воздух с хорошей теплопроводностью. Это происходит у всех пористых материалов за счет диффузных процессов.

Рассмотрим в качестве примера обычный воздушный шарик, наполненный гелием, который можно сравнить с одной ячейкой вспененной теплоизоляции. Новый шарик все время стремится улететь высоко в небо. Если утром он еще висел под потолком, то со временем он постепенно опустится и будет висеть в центре комнаты, а еще через несколько часов лежать на полу. Т.е. все это время газ за счет диффузии медленно выходит из шарика, и тот теряет свою «летучесть».

Так же и с теплоизоляцией. «Шарики» (ячейки), которые ближе всего расположены к границе с окружающим воздухом постепенно изменяют свой газовый состав. Однако те «шарики», которые находятся глубоко в материале, делают это очень медленно или не делают вовсе, поскольку инертному газу очень сложно пройти огромное количество стенок соседних «шариков» и вырваться наружу.

Кроме того, поверхность теплоизоляции покрыта фольгой, препятствующей выходу газа, соответственно, теплопроводность материала (ее газовая составляющая) сохраняется.

Итоговую формулу теплопроводности PIR можно записать в виде:

Подведем итог.

Теплоизоляция – это очень важный показатель. От нее зависит, насколько теплым будет ваш дом. У наиболее эффективной теплоизоляции все ее составляющие () должны быть как можно ниже. У современной изоляции на примере LOGICPIR это достигается за счет применения инертных газов, полимеров и специальных покрытий, отражающих тепловой поток. Уверены, что теперь вы не только сможете безошибочно выбрать теплоизоляционный материал, отвечающий самым высоким требованиям, но и поможете своим детям сдать физику на высший балл.

Источник: http://www.nappan.ru/press/news/Teploprovodnost_Prosto_o_slozhnom/

13 примеров конвекции в повседневной жизни — StudiousGuy

Конвекция относится к процессу передачи тепла или энергии через текучую среду (газ или жидкость) от высокой температуры к низкой. Конвекция — это один из трех типов теплопередачи; два других — излучение и проводимость. Под проводимостью понимается передача тепла между телами, находящимися в физическом контакте; тогда как при излучении энергия излучается в форме электромагнитных волн.

Молекулярное движение в жидкостях является причиной конвективной теплопередачи. Движение молекул увеличивается, когда температура молекул увеличивается; в результате молекулы стремятся удаляться друг от друга. Движение молекул отвечает за передачу тепла.

Если вы посмотрите вокруг, вы можете заметить, что конвекция играет важную роль в повседневной жизни. В этой статье мы собираемся обсудить реальные примеры конвекции, которые весьма интересны.

1. Бриз

Морской и наземный бриз являются классическими примерами конвекции. Согласно определению конвекции, молекулы с более высокой температурой вытесняют молекулы с более низкой температурой. Точно так же днем ​​поверхность суши у моря теплее, чем вечером. Конвекция заставляет воздух, который находится ближе к поверхности земли, нагреваться и, следовательно, подниматься. Этот теплый воздух у суши легко заменяется прохладным воздухом, в результате чего получается «Морской бриз.«Ночью земля остынет сильнее. Однако воздух над морской водой теплый и поэтому поднимается вверх. Как только этот воздух поднимается, он заменяется холодным воздухом с суши, который обычно называют «сухопутным бризом».

2. Кипяток

Конвекция проявляется при кипячении воды. Происходит то, что холодная вода внизу нагревается от энергии горелки и поднимается вверх. Когда горячая вода поднимается, холодная вода устремляется, чтобы заменить ее, что приводит к круговому движению.

3. Кровообращение у теплокровных млекопитающих

Вы можете быть удивлены, узнав, что теплокровные животные используют конвекцию для регулирования температуры тела. Человеческое сердце — это насос, а кровообращение в человеческом теле — пример принудительной конвекции. Тепло, выделяемое клетками тела, передается воздуху или воде, протекающей по коже.

4. Кондиционер

В жаркий летний день кондиционеры работают постоянно.Процесс охлаждения воздуха в кондиционерах основан на принципе конвекции. Холодный воздух выпускается кондиционерами. Теперь этот холодный воздух плотнее теплого и, следовательно, тонет. Теплый воздух, будучи менее плотным, поднимается вверх и втягивается кондиционером. В результате создается конвекционный ток, и комната охлаждается.

5. Радиатор

Даже радиаторы работают по принципу конвекции. Как и в приведенном выше примере с кондиционерами, радиаторы работают аналогичным образом.В радиаторах нагревательный элемент размещается внизу. Холодный воздух, будучи плотным, опускается и забирается в радиатор; его нагревают и отпускают. Горячий воздух заменяет промежуток, оставленный холодным воздухом. Поэтому создается конвекционный ток.

6. Холодильник

Принцип работы холодильников очень похож на принцип работы кондиционеров. Морозильная камера, в случае холодильников, размещается вверху. Как упоминалось выше, теплый воздух, будучи менее плотным, поднимается вверх и, следовательно, охлаждается морозильной камерой.Теперь этот прохладный воздух, будучи более плотным, опускается вниз и, следовательно, сохраняет нижнюю часть холодильника прохладной.

7. Поппер горячего воздуха

Поппер с горячим воздухом, который используется для приготовления попкорна, также использует принцип конвекции. Поппер горячего воздуха имеет вентилятор, вентиляционное отверстие и нагревательный элемент. Когда поппер включен, вентилятор нагнетает воздух на нагревательный элемент через вентиляционное отверстие. Нагревательный элемент, в свою очередь, нагревает воздух; который затем поднимается. Над нагревательным элементом размещены ядра попкорна.Ядра нагреваются, когда поднимается горячий воздух; поэтому ядра лопаются.

8. Воздушный шар

Воздушные шары могут подниматься по принципу конвекции. Вы могли видеть обогреватель в основании воздушного шара. Этот обогреватель нагревает воздух, который движется вверх. Горячий воздух, который поднимается вверх, попадает в воздушный шар и, следовательно, заставляет его подниматься. Когда должна произойти посадка воздушного шара, пилот выпускает часть горячего воздуха.Холодный воздух заменяет выпускаемый горячий воздух; поэтому воздушный шар опускается.

9. Горячий напиток

Кто не любит чашку горячего кофе в зимний день? Знаете ли вы, что выделение тепла из дымящейся чашки горячего кофе также работает по принципу конвекции? Возможно, вы часто наблюдали пар, выходящий из чашки с горячим кофе. Пар в виде теплого воздуха поднимается вверх из-за высокой температуры жидкости. Этот пар передается в воздух.

10. Осадки и грозы

Можно даже наблюдать роль конвекции в осадках и грозах. Посмотрим как? Облака образуются, когда вода в океане нагревается и поднимается вверх. Эти теплые капли воды, в свою очередь, насыщаются, что приводит к образованию облаков. Маленькие облака, которые образуются в результате этого процесса, сталкиваются друг с другом, образуя большие облака. Эти большие облака, которые обычно называют кучево-дождевыми, приводят к дождям и грозам.

11. Двигатели с воздушным охлаждением

Двигатели в транспортных средствах, например в легковых автомобилях, охлаждаются водяными рубашками. Продолжительная работа двигателей приводит к нагреванию воды в водяной рубашке / водяных трубах, окружающих двигатель. Чтобы двигатель продолжал работать, воду необходимо охладить. Когда вода нагревается, она начинает течь по трубам, окружающим двигатель. Когда теплая вода течет по этим трубам, она охлаждается вентиляторами.Эти вентиляторы тоже присутствуют в трубах. Как только вода остывает, она возвращается в двигатель; следовательно, соблюдая сам принцип конвекции и охлаждения двигателя.

12. Таяние льда

Таяние льда — еще один пример конвекции. Температура поверхности или границы льда увеличивается по мере того, как теплый воздух дует над поверхностью; или под ним течет вода, температура которой выше, чем у льда. Когда температура поверхности или границы льда изменяется, лед тает.Подобным образом замороженный материал тает в воде.

13. Конвекционная печь

Кто не любит торты и печенье? Но знаете ли вы, что в большинстве духовок используется принцип конвекции? В конвекционных печах используется принудительная конвекция. При нагревании молекулы, присутствующие в воздухе, также нагреваются и начинают двигаться. Благодаря этому теплому воздуху пища в духовке готовится.

Источники изображений
  • бесплатная онлайн-частная пилотная наземная школа.com
  • subrogationrecoverylawblog.com
  • flowvella.com
  • bestheating.com
  • 3.bp.blogspot.com
  • i5.walmartimages.ca
  • cradle-cfd.com
  • slideplayer.com
  • images-na.ssl-images-amazon.com
  • inabottle.it
  • icestories.exploratorium.edu
  • ffden-2.phys.uaf.edu

Конвекционные токи и как они работают

Конвекционные токи — это текущая жидкость, которая движется из-за разницы температур или плотности внутри материала.

Поскольку частицы в твердом теле фиксируются на месте, конвекционные токи наблюдаются только в газах и жидкостях. Разница температур приводит к передаче энергии из области с более высокой энергией в область с более низкой энергией.

Конвекция — это процесс теплопередачи. Когда возникают токи, материя перемещается из одного места в другое. Так что это тоже процесс массообмена.

Естественная конвекция называется естественной конвекцией или свободной конвекцией .Если жидкость циркулирует с помощью вентилятора или насоса, это называется принудительной конвекцией . Ячейка, образованная конвекционными потоками, называется конвекционной ячейкой или ячейкой Бенара .

Почему они формируются

Разница температур заставляет частицы двигаться, создавая ток. В газах и плазме разница температур также приводит к участкам с более высокой и более низкой плотностью, где атомы и молекулы движутся, заполняя области с низким давлением.

Короче говоря, горячие жидкости поднимаются, а холодные — опускаются.Если не присутствует источник энергии (например, солнечный свет, тепло), конвекционные токи продолжаются только до тех пор, пока не будет достигнута однородная температура.

Ученые анализируют силы, действующие на жидкость, чтобы классифицировать и понять конвекцию. Эти силы могут включать:

  • Гравитация
  • Поверхностное натяжение
  • Разница концентраций
  • Электромагнитные поля
  • Вибрация
  • Образование связи между молекулами

Конвекционные токи можно моделировать и описывать с помощью уравнений конвекции-диффузии, которые представляют собой скалярные уравнения переноса.

Примеры конвективных токов и шкалы энергии

  • Вы можете наблюдать конвекционные токи в воде, кипящей в кастрюле. Просто добавьте несколько горошин или кусочков бумаги, чтобы отследить текущий поток. Источник тепла на дне кастрюли нагревает воду, давая ей больше энергии и заставляя молекулы двигаться быстрее. Изменение температуры также влияет на плотность воды. Когда вода поднимается к поверхности, часть ее имеет достаточно энергии, чтобы уйти в виде пара. Испарение охлаждает поверхность настолько, что некоторые молекулы снова опускаются на дно сковороды.
  • Простой пример конвекционных потоков — теплый воздух, поднимающийся к потолку или чердаку дома. Теплый воздух менее плотный, чем холодный, поэтому он поднимается вверх.
  • Ветер — это пример конвекционного течения. Солнечный свет или отраженный свет излучает тепло, создавая разницу температур, которая заставляет воздух двигаться. Тенистые или влажные участки более прохладны или способны поглощать тепло, усиливая эффект. Конвекционные токи являются частью того, что движет глобальной циркуляцией атмосферы Земли.
  • При сгорании возникают конвекционные токи.Исключением является то, что горению в условиях невесомости не хватает плавучести, поэтому горячие газы не поднимаются естественным образом, позволяя свежему кислороду подпитывать пламя. Минимальная конвекция в невесомости приводит к тому, что многие языки пламени заглушаются собственными продуктами сгорания.
  • Атмосферная и океаническая циркуляция — это крупномасштабные движения воздуха и воды (гидросфера) соответственно. Эти два процесса работают вместе друг с другом. Конвекционные потоки в воздухе и на море приводят к погоде.
  • Магма в мантии Земли движется конвекционными токами. Горячее ядро ​​нагревает материал над ним, заставляя его подниматься к корке, где он охлаждается. Тепло исходит от сильного давления на скалу в сочетании с энергией, выделяющейся при естественном радиоактивном распаде элементов. Магма не может продолжать подниматься, поэтому она движется горизонтально и снова опускается вниз.
  • Эффект дымовой трубы или дымохода описывает конвекционные потоки, перемещающие газы через дымоходы или дымоходы. Плавучесть воздуха внутри и снаружи здания всегда разная из-за разницы температуры и влажности.Увеличение высоты здания или стека увеличивает силу эффекта. Это принцип, на котором основаны градирни.
  • Конвекционные токи очевидны на солнце. Гранулы, видимые в фотосфере солнца, являются вершинами конвективных ячеек. В случае Солнца и других звезд жидкость — это плазма, а не жидкость или газ.

Примеры конвекции

Ниже приведены некоторые примеры конвекции. Эти примеры ясно проиллюстрируйте, что такое конвекция, с ситуациями, с которыми вы ежедневно сталкиваетесь жизнь.Вы также поймете, что такое конвекционные токи.

Конвекция возникает только в таких жидкостях, как жидкость или газ. Конвекция передача тепла нагретым веществом в более холодную область. Кулер регион обычно расположен выше, чем более теплый регион.

Легкое Пример конвекции — использование радиаторов для обогрева дома. холодной зимой. Тепло, исходящее от радиаторов, обычно приходило от горячей воды из подвала внизу.

Когда жидкость, такая как вода или воздух, нагревается, она расширяется и становится менее плотной.В результате поднимается.

Другие примеры конвекции

Кипячение воды в кастрюле — также отличный пример конвекции.

Когда кипятишь воду, жидкость быстро движется. Вы когда-нибудь задумывались, почему? Вода на дне кастрюли нагревается сильнее. Это сделает вода на дне кастрюли менее плотная и поднимается наверх. Однажды на сверху он меньше нагревается и становится более плотным. Это сделает вода снова вернется на дно кастрюли.Оказавшись внизу, он вернется назад, и процесс повторится. Вперед и назад движения называются конвекционными токами.

Процесс показан ниже.

Обратите внимание на использование больших красных кружков, которые показывают, что при нагревании вода расширяется и становится менее плотной.

Мы также можем наблюдать конвекционные течения в действии на берегу моря.

Днем берег прогревается быстрее, чем вода. Напомним, вода имеет высокую удельную теплоемкость, поэтому вода долго нагревается.

Следовательно, воздух над водой холоднее воздуха над берегом. С воздух над берегом теплее, он поднимется и прохладнее воздух с вода займет ее место. В результате люди на берегу чувствуют приятный ветерок на их лице.

Ночью вода наконец нагревается вверх. Опять же, из-за высокой удельной теплоемкости воды потребуется вода дольше остывает.

Таким образом, берег остывает быстрее. Более теплый воздух сейчас над морем.Это море, которое теперь получает легкий ветерок.

Какой пример конвекционных токов? A. маршмеллоу на костре B. горшок стоит

Ответ:

Конвекционные потоки имеют тенденцию перемещать частицы жидкости или газа из одного места в другое. Они возникают в результате различий, возникающих в пределах плотности и температуры конкретного газа или жидкости. Конвекция — одна из форм теплопередачи, двумя другими из которых являются излучение и теплопроводность.Процесс конвекции происходит только в жидкостях, то есть в жидкостях и газах. Это происходит по той причине, что молекулы в жидкостях или газах могут свободно перемещаться.

Тепловая энергия может передаваться в процессе конвекции за счет разницы температур между двумя частями жидкости. Из-за этой разницы температур горячие жидкости имеют тенденцию подниматься, а холодные — опускаться. Это создает ток в жидкости, называемый конвекционным током.

Мантия внутри земной поверхности течет из-за конвективных токов.Эти токи в основном вызваны очень горячим веществом, присутствующим в самой глубокой части мантии, которое поднимается вверх, затем охлаждается, опускается снова и снова, повторяя тот же процесс нагрева и подъема.

Следовательно, конвекционный ток определяется как «процесс непрерывного нагрева жидкостей или газов с помощью процесса, называемого конвекцией.

Конвекционные токи — Примеры

Кипячение воды — При кипячении воды на плите, при заваривании чая или при варке яйца. Температура молекул внутри этих жидкостей увеличивается, и они начинают медленно и быстро двигаться.Эти молекулы заряжаются, производя кинетическую энергию. Эти молекулы горячей воды, находящиеся рядом с источником тепла, имеют тенденцию становиться менее плотными. Они поднимаются над более холодными плотными молекулами. По мере того, как эти более горячие молекулы поднимаются, они имеют тенденцию остывать и начинают тонуть, заменяя более холодные молекулы. Эти движения, происходящие внутри этой кипящей воды, представляют собой конвекционные токи.

Костры — Жара, которую мы чувствуем вокруг костра, — это все, что конвекционные потоки нагревают вашу руку. Тепло исходит от различных видов теплопередачи, таких как излучение.Но когда вы кладете руку над костром, к вам поднимается множество конвекционных потоков.

Перемены погоды. Прохладный воздух и ветерок, возникающие рядом с пляжем, являются результатом конвекционных течений. Эти течения также влияют на ежедневные изменения погоды.

Конвекционные течения в океане — Океанические течения также являются конвекционными течениями. Они вызваны разницей в плотности воды и температурой в разных частях океана.

Конвекционные потоки присутствуют в воздухе — Хорошим примером конвекционных потоков является теплый воздух, который поднимается к потолку в вашем доме. Процесс происходит потому, что теплый воздух менее плотный, чем более холодный. Еще один хороший пример конвекционного течения — ветер. Ветер в основном возникает, когда отраженное излучение солнечного света нагревает воздух, вытесняя более холодный воздух.

Определение конвекции по Merriam-Webster

конвекция | \ kən-ˈvek-shən \

: движение в газе или жидкости, в котором более теплые части движутся вверх, а более холодные части движутся вниз конвекционные потоки

б : Передача тепла конвекцией. продукты, приготовленные конвекцией — сравнить проводимость, излучение

конвекционных токов — что такое конвекционные токи?

Что такое конвекция? Конвекция — это процесс передачи тепла за счет движения жидкостей (газа или жидкости) между областями с различными температурами. Если конвекция возникает естественным образом, она называется естественной конвекцией или свободной конвекцией. Если конвекция возникает принудительно, например, если жидкость циркулирует с помощью насоса или вентилятора, это называется принудительной конвекцией.

Что такое конвекционные токи?

Конвекционные токи возникают из-за разницы плотностей жидкости, возникающей из-за температурных градиентов. Активность, возникающая в результате непрерывной замены нагретой жидкости в области источника тепла на находящуюся поблизости более прохладную жидкость, называется потоком естественной конвекции.Тепло- и массообмен, который усиливается за счет этого потока естественной конвекции, называется тепломассопереносом естественной конвекции. Говорят, что при естественной конвекции тепло и материя перемещаются из одного места в другое. Конвекционные потоки связаны с естественной конвекцией, при которой движение жидкости происходит естественным образом, например, плавучесть (оптимизм). Конвекционный ток не может иметь место в твердых телах, поскольку частицы внутри твердых тел не могут свободно течь, и большая часть свободного движения происходит в основном из-за разница в плотности, которая вызвана огромной теплопередачей между пластинами.Примеры конвекционного тока:

1. Холодильник:

В случае холодильника морозильная камера находится в верхней части. Основная причина заключается в том, что теплый воздух внутри холодильника будет подниматься вверх, а холодный воздух в точке замораживания будет двигаться вниз, что будет поддерживать нижнюю часть холодильника в теплом состоянии.

2. Гроза:

Гроза может быть лучшим примером конвекционных потоков.Теплая вода в воздухе поднимается вверх и превращается в насыщенные водные капли, которые образуют облака. В этом процессе меньшие облака сталкиваются друг с другом и, следовательно, образуются большие облака. Грозы или кучево-дождевые облака образуются по достижении финальной стадии роста.

3. Напиток на пару:

Напиток на пару — простой пример конвекции. Обычно пар выходит из чашки горячего кофе или чая. Теплый воздух, содержащийся в паре, поднимается вверх за счет тепла жидкости.

4. Костры:

Причина, по которой жар над костром выше, чем тепло рядом с ним, связана с конвекционными потоками. Если вы поместите руки перед костром (конечно, на безопасном расстоянии; ни в коем случае не помещайте руку над огнем), вы можете почувствовать тепло, которое связано с наличием небольшого количества конвекционных потоков, поднимающихся вверх. к вам.

Почему образуются конвекционные токи?


  • • Разница в уровне температуры заставляет частицы двигаться, что приводит к возникновению тока.В плазме и газах разница температур приводит к областям с низкой и высокой плотностью, где молекулы и атомы движутся, заполняя области с низким давлением. Если отсутствуют источники энергии, такие как солнечный свет, тепло и т. Д., Конвекционные токи будут продолжаться до достижения однородной температуры.

  • Как создаются конвекционные токи?

    На основе трех физических предположений создаются конвекционные токи. Это следующие:


  • • Источник тепла:

  • Наличие источника тепла важно, потому что конвекционные токи генерируются разницей в плотности жидкости, возникающей из-за температурных градиентов.В случае естественной конвекции жидкость, окружающая источник тепла, получает тепло. Из-за теплового расширения он становится менее плотным и поднимается выше. Тепловое расширение жидкости играет важную роль в создании конвекционных потоков. Проще говоря, более плотные или тяжелые компоненты будут двигаться вниз, в то время как менее плотные или более легкие компоненты будут двигаться вверх, что приведет к движению жидкости в объеме.


  • • Наличие надлежащего ускорения:

  • Естественная конвекция возникает только в гравитационном поле или при наличии надлежащего ускорения, такого как центробежная сила, сила Кориолиса и т. Д.На околоземной орбите он практически не работает. Например, другие механизмы теплопередачи необходимы для предотвращения перегрева электронных компонентов на орбитальной Международной космической станции.


  • • Правильная геометрия:

  • Величина и наличие естественной конвекции также будут зависеть от геометрии проблемы. В гравитационном поле наличие градиента плотности жидкости не гарантирует существования естественных конвективных течений.
    Эту проблему можно продемонстрировать на следующих рисунках, где жидкость окружена двумя большими горизонтальными пластинами с разными температурами.(изображение будет загружено в ближайшее время)

    Случай A:

    В этом случае температура нижней пластины выше, чем температура верхней пластины. Здесь происходит уменьшение плотности в направлении силы тяжести. Эта геометрия способствует циркуляции жидкости, и благодаря естественной циркуляции происходит передача тепла. Будучи в процессе теплой, тяжелая жидкость будет двигаться вниз, а более легкая жидкость будет двигаться вверх, охлаждая при движении.

    Случай B:

    В этом случае температура нижней пластины ниже, чем температура верхней пластины.Здесь плотность увеличивается согласно направлению силы тяжести. Такая геометрия приводит к стабильному температурному градиенту, стабильным условиям и не вызывает циркуляцию жидкости. Также передача тепла происходит только за счет теплопроводности. Конвекция отличается от конвекции, которая представляет собой передачу тепла между веществами, находящимися в прямом контакте друг с другом. Конвекционные токи передают тепло за счет массового движения жидкостей, таких как вода, расплавленная порода или воздух, из одного места в другое.

    Конвекция в океане:

    В океанах конвекция приводит в движение океанские течения, такие как Гольфстрим и другие течения, которые переворачивают и перемешивают воды. С более высоких широт холодная полярная вода тянется вниз и опускается на дно океана. Его тянет вниз к экватору, когда светлая и теплая вода поднимается вверх к поверхности океана. Чтобы заменить холодную воду, которая тянется в южном направлении, теплая вода тянется в северном направлении.Растворимые питательные вещества и тепло распределяются по всему миру благодаря этому процессу.

    Конвекция в воздухе:

    Циркуляция воздуха в земной атмосфере осуществляется за счет конвекции. Около экватора Земли солнце нагревает воздух, который становится менее плотным и поднимается вверх. По мере подъема он остывает и становится менее плотным, чем окружающий воздух, расширяясь и снова опускаясь к экватору. Постоянно движущиеся ячейки холодного и теплого воздуха известны как ячейки Хэдли.Он постоянно вызывает циркуляцию воздуха на поверхности земли — это то, что мы называем ветром. Токи атмосферной конвекции также являются причиной того, что облака поднимаются вверх.

    Конвекция на Земле:

    Геологи считают, что расплавленная порода глубоко под землей распространяется конвекционными потоками. Находясь в полужидком состоянии, горная порода должна вести себя, как и любые другие жидкости, поднимаясь вверх со дна мантии после того, как она станет более горячей и менее плотной из-за тепла ядра Земли.Камень становится относительно плотнее и холоднее, опускаясь обратно к ядру, поскольку теряет тепло в земной коре. Считается, что постоянно циркулирующие ячейки холодной и горячей расплавленной породы помогают нагревать поверхность. Кроме того, некоторые геологи считают, что конвекционные потоки внутри Земли являются одной из причин землетрясений, извержения вулканов и дрейфа континентов.

    Конвекционные токи — Атмосферная циркуляция:

    Атмосферная циркуляция является наиболее важным явлением в земном климате.Это движение воздуха в больших масштабах и средство, с помощью которого тепловая энергия вместе с циркуляцией океана распределяется по поверхности земли. Ежегодно атмосферная циркуляция Земли меняется, но крупномасштабная структура циркуляции остается довольно постоянной. (Изображение будет загружено в ближайшее время) Атмосферная циркуляция является следствием освещения Земли Солнцем и законов термодинамики. Его можно рассматривать как тепловой двигатель, приводимый в действие энергией солнца, энергия которого в конечном итоге уходит в темноту космоса, а также ветряные турбины питаются от солнца.

    Что произойдет, если прекратятся конвекционные токи на Земле?

    Предположим, что если все конвекционные токи на Земле прекратятся, это отразится на нас хуже всего. Количество тепла, излучаемого солнцем, определяет температуру поверхности земли. Если нет конвекции, то экватор будет становиться все горячее и горячее, а северный и южный полюса — все холоднее и холоднее. Океанические течения из тропических регионов будут приносить теплую воду больше на север, а течения из более прохладных регионов будут приносить прохладную воду к экватору.Следовательно, если конвекция полностью прекратится, возникнут океанические течения, и очень низкие и очень высокие температуры заставят живые существа на Земле отойти от экватора и полюсов. шкала. Камни могут дрейфовать очень медленно, даже если они твердые. Конвекция способствовала образованию крупных островов. На островах не будет новых вулканов, если камни перестанут течь внутрь земли. Влияние конвекции на климат Земли: Конвекция, которая происходит в глубоких слоях мантии Земли, также влияет на климат и поверхность Земли.Благодаря движению океанических и континентальных плит конвекция влияет на атмосферу. Огромное количество воздуха циркулирует в атмосфере, и положение бассейнов и континентов в океане меняется в зависимости от того, как погода и движение воздуха вокруг земного шара. Колебания воздушных и океанских течений позволяют атмосферным осадкам перемещаться в различные области земного шара.

    Также предполагается, что конвекция, происходящая в мантии Земли, ответственна за создание магнитного поля Земли.Из-за потока жидкого железа через мантию возникает магнитное поле Земли, которое создает электрические токи.

    методов теплопередачи | Физика

    Цель обучения

    К концу этого раздела вы сможете:

    • Обсудите различные методы передачи тепла.

    Не менее интересны, чем эффекты теплопередачи в системе, методы, с помощью которых это происходит.Всякий раз, когда есть разница температур, происходит передача тепла. Теплоотдача может происходить быстро, например, через кастрюлю, или медленно, например, через стенки ящика для льда для пикника. Мы можем контролировать скорость теплопередачи, выбирая материалы (например, толстую шерстяную одежду на зиму), контролируя движение воздуха (например, используя уплотнители вокруг дверей) или выбирая цвет (например, белая крыша для отражения лета). Солнечный свет). Так много процессов связано с теплопередачей, поэтому трудно представить себе ситуацию, когда теплопередача не происходит.Однако каждый процесс, связанный с передачей тепла, осуществляется всего тремя способами:

    1. Проводимость — это передача тепла через неподвижное вещество при физическом контакте. (Материя неподвижна в макроскопическом масштабе — мы знаем, что существует тепловое движение атомов и молекул при любой температуре выше абсолютного нуля.) Тепло, передаваемое между электрической горелкой плиты и дном кастрюли, передается за счет теплопроводности.
    2. Конвекция — это передача тепла за счет макроскопического движения жидкости.Этот тип переноса имеет место, например, в топке с принудительной подачей воздуха и в погодных системах.
    3. Передача тепла посредством излучения происходит, когда излучаются или поглощаются микроволны, инфракрасное излучение, видимый свет или другая форма электромагнитного излучения. Очевидный пример — потепление Земли Солнцем. Менее очевидный пример — тепловое излучение человеческого тела.

    Рис. 1. В камине передача тепла происходит всеми тремя способами: теплопроводностью, конвекцией и излучением. Излучение отвечает за большую часть тепла, передаваемого в комнату. Передача тепла также происходит через теплопроводность в комнату, но гораздо медленнее. Передача тепла путем конвекции также происходит через холодный воздух, поступающий в комнату вокруг окон, и горячий воздух, покидающий комнату, поднимаясь вверх по дымоходу.

    Мы рассмотрим эти методы более подробно в трех следующих модулях. Каждый метод имеет уникальные и интересные характеристики, но все три имеют одну общую черту: они передают тепло исключительно из-за разницы температур (рис. 1).

    Проверьте свое понимание

    Назовите пример из повседневной жизни (отличный от текста) для каждого механизма теплопередачи.

    Решение
    • Электропроводность: тепло передается вашим рукам, когда вы держите чашку горячего кофе.
    • Конвекция: теплопередача, когда бариста «пропаривает» холодное молоко, чтобы сделать горячее какао .
    • Излучение: разогрев холодной чашки кофе в микроволновой печи.

    Сводка раздела

    • Тепло передается тремя различными способами: теплопроводностью, конвекцией и излучением.

    Концептуальные вопросы

    1. Каковы основные способы передачи тепла от горячего ядра Земли к ее поверхности? С поверхности Земли в космос?
    2. Когда наши тела становятся слишком теплыми, они реагируют потоотделением и усилением кровообращения на поверхности, чтобы отводить тепловую энергию от ядра. Как это повлияет на человека, находящегося в горячей ванне с температурой 40 ° C?
    3. На рис. 2 показан в разрезе термос (также известный как сосуд Дьюара), который представляет собой устройство, специально разработанное для замедления всех форм теплопередачи.Объясните функции различных частей, таких как вакуум, серебрение стен, тонкостенная длинная стеклянная горловина, резиновая опора, воздушный слой и стопор.

      Рис. 2. Конструкция термоса предназначена для подавления всех способов теплопередачи.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *