Какие бывают звёзды? | Сварганька
Какие бывают звёзды, и какие их характеристики
Посмотрите на ночное небо, какие бывают звёзды. В ясные, темные ночи с нормальным зрением, вы можете видеть тысячи звезд, некоторые из них едва заметны, другие светят так ярко, что их видно, когда небо еще синее! Почему же некоторые звёзды ярче, чем другие?
По двум причинам. Одни просто ближе к нам, а другие, хоть и далеко, но размер их невообразимо велик. Давайте взглянем на небольшой участок южного неба.
Альфа Центавра (жёлтая), является одной из самых ярких звезд в ночном небе, она похожа на наше Солнце, только немного крупнее и ярче, и имеет примерно такой же цвет. Причина её яркости в том, что она находится (по космическим меркам) очень близко к нам: всего 4,4 световых года.
Но посмотрите на вторую по яркости звезду (чуть выше синяя), известную как Бета Центавра.
Бета Центавра на самом деле не соседка Альфа Центавра. Хотя желтая звезда и находится всего 4,4 световых годах от Земли, то Бета Центавра, расположена в 530 световых годах от Земли, или
Почему же тогда Бета Центавра светит почти так же ярко, как и Альфа Центавра?Да потому, что это другой тип звезды! Какие бывают звёзды, если мы посмотрим по цвету. Жёлтая Альфа Центавра «G-типа», так же, как наше Солнце. А Бета Центавра является одной из голубых звезд, и относится к «В-типу» звезд.
Каждая звезда имеет 5 основных параметров: 1. Светимость, 2. Цвет, 3. Температура, 4. Размер, 5. масса. Эти характеристики существенно зависят друг от друга. Цвет зависит от температуры звезды, интенсивность зависит от температуры и размеров.
Цвет и температура звезды
Несмотря на оттенки, звезды имеют три основных цвета : красный, желтый и синий. Наше Солнце является одной из желтых звезд. Цвет звезды зависит от её температуры. Температура жёлтых звезд на поверхности достигает 6000° С. Красные звёзды холоднее температура их поверхности от 2000° С до 3000° С. А самыми горячими считаются голубые звёзды, от 10 000° С до 100 000° С.
Жизнь звёзд
Звезды, как и человек, имеет свой жизненный путь, Проходя который, в конце концов, как это не грустно они исчезнут. Солнце возникло около 4,6 млрд лет назад, и составляет примерно половину своего существования. По истечении этого времени, оно станет красным гигантом, после чего превратится в белого карлика, а в конечном итоге остается черным карликом. Небольшой процент звезд взрывается, их называют сверхновой.
Сравнение звёзд
Сварганька рекомендует прочитать ещё
svargan-sam.ru
Какие бывают типы звёзд?
Звезда есть звезда, верно? Конечно, существуют некоторые различия с точки зрения цвета, когда вы смотрите на ночное небо. Но они все, в принципе, одинаковые большие шары сжигающегося газа, в миллионах, миллиардах световых лет от нас, верно? Ну, не совсем. По правде говоря, звёзды также разнообразны, как и всё в нашей Вселенной, сводясь к одной из многих классификаций, основанных на их характерных особенностях.В целом, существует много различных типов звёзд от крошечных коричневых карликов до красных и голубых сверхгигантов. Есть ещё более странные виды звёзд, как нейтронные звёзды и звёзды Вольфа-Райе, и теоретические кварковые звёзды. И поскольку исследование Вселенной нами продолжается, мы продолжаем изучать о звёздах всё, что заставляет нас расширять наше мировоззрение. Давайте рассмотрим различные типы звёзд.
Протозвезды:
Протозвезда — это то, что бывает перед образованием самой звезды. Протозвезда — это объект, состоящий из газа, который коллапсировал из гигантского молекулярного облака. Фаза звёздной эволюции — протозвезда — длится около 100 000 лет. С течением времени, гравитация и давление увеличиваются, заставляя звезду коллапсировать (сжиматься). Всё энерговыделение протозвезды исходит только от нагревания, вызванного гравитационным сжатием — термоядерные реакции пока ещё не начались.
Звёзды Т Тельца:
Звезда Т Тельца — это этап формирования и эволюции звезды прямо перед тем, как стать звездой главной последовательности. Эта фаза наступает в конце фазы протозвезды, когда гравитационное давление, сдерживающее звезду вместе, является источником всей её энергии. Звёзды Т Тельца не имеют достаточного давления и температуры в своих ядрах, чтобы запустить термоядерный синтез, но они не похожи на звёзды главной последовательности ещё и тем, что ярче них, потому что больше них. Звёзды Т Тельца имеют большие зоны покрытия солнечными пятнами, и они имеют интенсивные рентгеновские вспышки и чрезвычайно мощные звёздные ветра. Звёзды находятся в стадии Т Тельца около 100 миллионов лет.
Звёзды главной последовательности:
Большинство звёзд в нашей галактике, и даже во Вселенной, — это звёзды главной последовательности. Наше Солнце — это звезда главной последовательности, как и наши ближайшие соседи Сириус и Альфа Центавра А. Звёзды главной последовательности могут сильно различаться по размеру, массе и яркости, но все они занимаются одним и тем же: преобразуют водород в гелий в своих ядрах, выпуская огромное количество энергии.Красный гигант:
Когда звезда израсходовала весь свой запас водорода в ядре, термоядерные реакции приостанавливаются, и звезда больше не создаёт давления наружу, чтобы противодействовать гравитационному давлению, направленному внутрь, стягивающему звезду вместе. Оболочка из водорода вокруг ядра запускает продолжение жизни звезды, но при этом звезда резко увеличится в размерах. Стареющая звезда стала красным гигантом, и её размер может быть в 100 раз больше звезды главной последовательности. Когда её водородное топливо израсходуется, в термоядерных реакциях начнётся переработка гелия, а потом и более тяжёлых элементов. Жизнь звезды в фазе красного гиганта продлится всего несколько сотен миллионов лет перед тем, как она выработает топливо полностью и станет белым карликом.Когда звезда полностью исчерпает водородное топливо в своём ядре, она испытает нехватку массы, чтобы в термоядерных реакциях перерабатывать более тяжёлые элементы, и войдёт в фазу белого карлика. Давление света наружу от термоядерных реакций прекратится, и звезда коллапсирует (сожмётся) под действием собственной гравитации. Белый карлик светит только потому, что когда-то он был горячей звездой, но так как термоядерных реакций в нём больше не происходит, он остывает до фоновой температуры Вселенной. Этот процесс займёт сотни миллиардов лет, так что белые карлики фактически ещё не сильно остыли.
Красный карлик:
Красные карлики — это один самых распространённых типов звёзд во Вселенной. Это звёзды главной последовательности, но они имеют так мало массы, что гораздо холоднее, чем наше Солнце. Но их особенность в другом. Красные карлики умеют сохранять водородное топливо, перемешивая его в своём ядре, и поэтому они могут экономить своё топливо гораздо больше других звёзд. Астрономы считают, что некоторые из красных карликов могут сжигать топливо до 10 триллионов лет. Самые маленькие красные карлики имеют примерно 0,075 солнечных масс, и их масса может достигать половины массы Солнца.
Нейтронные звёзды:
Если масса звезды примерно 1,35 — 2,1 солнечных масс, то она не превратится в белого карлика, когда погибнет. Вместо этого, звезда погибнет в катастрофическом событии, называемом вспышкой сверхновой, а оставшееся ядро станет нейтронной звездой. Как предполагает её название, нейтронная звезда — это экзотический тип звёзд, которые полностью состоят из нейтронов. Это происходит из-за сильной гравитации, когда звезда сжимается настолько сильно, что все протоны и электроны сдавливаются вместе и образуют нейтроны. Если звёзды ещё массивнее, то они превращаются после вспышки сверхновой в чёрные дыры.Похожие статьи:
universetoday-rus.com
Какого цвета бывают звезды? — Любительская астрономия для начинающих
Рубрика: Астрономия для чайников Опубликовано 07.12.2018 · Комментарии: 0 · На чтение: 4 мин · Просмотры:Post Views: 2 229
Многие люди думают, что все звезды на небе белого цвета. (Кроме Солнца, которое, конечно, желтое.) Как это ни удивительно, но на самом деле все как раз наоборот: наше Солнце практически белое, а звезды бывают разных цветов — голубоватые, белые, желтоватые, оранжевые и даже красные!
Другой вопрос, можно ли увидеть цвет звезд невооруженным глазом? Тусклые звезды кажутся белыми просто потому, что они слишком слабы для возбуждения в сетчатке наших глаз колбочек — специальных клеток-рецепторов, отвечающих за цветное зрение. Чувствительные к слабому свету палочки не различают цветов. Именно поэтому в темноте все кошки серые, а все звезды белые.
Цвета ярких звезд
А как насчет ярких звезд?
Давайте посмотрим на созвездие Ориона, а вернее, на две его ярчайшие звезды, Ригель и Бетельгейзе. (Орион — центральное созвездие зимнего неба. Наблюдается по вечерам на юге с конца ноября по март.)
Звезда Бетельгейзе выделяется среди других в созвездии Ориона своим красноватым оттенком. Фото: Bill Dickinson/APOD
Даже беглого взгляда хватит, чтобы заметить красный цвет Бетельгейзе и голубовато-белый цвет Ригеля. Это не кажущееся явление — звезды действительно имеют разные цвета. Разница в цвете определяется только температурой на поверхностях этих звезд. Белые звезды горячее желтых, а желтые, в свою очередь, горячее оранжевых. Самые горячие звезды голубовато-белого цвета, а самые холодные — красные. Таким образом, Ригель намного горячее Бетельгейзе.
Какого цвета на самом деле Ригель?
Иногда, правда, все не так очевидно. В морозную или ветреную ночь, когда воздух неспокоен, вы можете наблюдать странную вещь — Ригель быстро-быстро меняет свою яркость (попросту говоря, мерцает) и переливается разными цветами! Иногда кажется, что он голубой, иногда — что белый, а затем на мгновение проскакивает и красный цвет! Получается, что Ригель вовсе не голубовато-белая звезда — она вообще непонятно какого цвета!
Голубой Ригель и отражательная туманность Голова Ведьмы. Фото: Michael Heffner/Flickr.com
Ответственность за это явление лежит целиком и полностью на атмосфере Земли. Низко над горизонтом (а Ригель в наших широтах высоко никогда не поднимается) звезды часто мерцают и переливаются разными цветами. Их свет проходит через очень большую толщу атмосферы, прежде чем достичь наших глаз. По пути он преломляется и отклоняется в слоях воздуха с разной температурой и плотностью, создавая эффект дрожания и быстрой смены цвета.
Наилучший пример переливающейся разными цветами звезды — белый Сириус, который находится на небе по соседству с Орионом. Сириус — ярчайшая звезда ночного неба и потому ее мерцание и быстрое изменение цвета гораздо заметней, чем у звезд по соседству.
Хотя звезды бывают разных цветов, невооруженным глазом лучше всего различаются белые и красноватые. Из всех ярких звезд, пожалуй, только Вега выглядит отчетливо голубоватой.
Вега в телескоп похожа на сапфир. Фото: Fred Espanak
Цвета звезд в телескопы и бинокли
Оптические инструменты — телескопы, бинокли и подзорные трубы — покажут гораздо более яркую и широкую палитру звездных цветов. Вы увидите ярко-оранжевые и желтые звезды, голубовато-белые, желтовато-белые, золотистые и даже зеленоватые звезды! Насколько эти цвета реальны?
В основном они все реальны! Правда, зеленых звезд в природе не бывает (почему — отдельный вопрос), это оптический обман, хотя и очень красивый! Наблюдение зеленоватых и даже изумрудно-зеленых звезд возможно только в тесных двойных звездах, когда очень близко есть желтая или желтовато-оранжевая звезда.
Телескоп-рефлектор гораздо точнее передает цвета, чем рефрактор, поскольку линзовые телескопы страдают в той или иной степени хроматической аберрацией, а зеркала рефлектора отражают свет всех цветов одинаково.
Очень интересно понаблюдать за разноцветными звездами сначала невооруженным глазом, а затем в бинокль или в телескоп. (Наблюдая в телескоп, используйте минимальное увеличение.)
В таблице ниже приведены цвета для 8 ярких звезд. Блеск звезд дан в звездных величинах. Буква v означает, что блеск звезды переменный — она светит в силу физических причин то ярче, то тусклее.
Звезда | Созвездие | Блеск | Цвет | Вечерняя видимость |
---|---|---|---|---|
Сириус | Большой Пёс | -1.44 | Белый, но часто сильно мерцает и переливается разными цветами из-за атмосферных условий | Ноябрь — март |
Вега | Лира | 0.03 | Голубая | Круглый год |
Капелла | Возничий | 0.08 | Желтая | Круглый год |
Ригель | Орион | 0.18 | Голубовато-белый, но часто сильно мерцает и переливается разными цветами из-за атмосферных условий | Ноябрь — апрель |
Процион | Малый Пёс | 0.4 | Белая | Ноябрь — май |
Альдебаран | Телец | 0.87 | Оранжевый | Октябрь — апрель |
Поллукс | Близнецы | 1.16 | Бледно-оранжевая | Ноябрь — июнь |
Бетельгейзе | Орион | 0,45v | Оранжево-красная | Ноябрь — апрель |
Разноцветные звезды на декабрьском небе
В декабре можно найти целую дюжину ярких цветных звезд! О красной Бетельгейзе и голубовато-белом Ригеле мы уже говорили. В исключительно спокойные ночи поражает своей белизной Сириус. Звезда Капелла в созвездии Возничего для невооруженного глаза кажется практически белой, зато в телескоп обнаруживает отчетливый желтоватый оттенок.
Обязательно взгляните на Вегу, которая с августа по декабрь видна по вечерам высоко в небе на юге, а затем на западе. Вегу недаром называют небесным сапфиром — настолько глубок ее голубой цвет при наблюдении в телескоп!
Наконец, у звезды Поллукс из созвездия Близнецов вы обнаружите бледно-оранжевое сияние.
Поллукс, ярчайшая звезда в созвездии Близнецов. Фото: Fred Espanak
В конце замечу, что цвета звезд, которые мы наблюдаем визуально, во многом зависят от чувствительности наших глаз и субъективного восприятия. Возможно, вы мне возразите по всем пунктам и скажете, что цвет Поллукса густо-оранжевый, а Бетельгейзе — желтовато-красный. Проведите эксперимент! Посмотрите на звезды, приведенные в таблице выше, сами — невооруженным глазом и через оптический инструмент. Дайте свою оценку их цвета!
Post Views: 2 229
skygazer.ru
Какие бывают звёзды — современный взгляд
Звёзды на небе привлекали внимание ещё палеолитических охотников — сохранились схематические изображения созвездий, нанесённые на кости мамонтов. Крошечные, сияющие холодным светом огоньки считали знамениями богов, душами умерших предков хранителями и защитниками, оберегающими покой человека в ночной тьме. Но лишь относительно недавно человечество смогло приблизиться к их тайнам. Почему звёзды бывают разных размеров и какова их природа?
Супергиганты и субгиганты
Систематическими наблюдениями за звёздами первыми занялись вавилоняне, верившие, что все, происходящее на Земле, определяется небесными светилами. Рациональные греки применили научный подход к изучению небес. Аароном Гиппарх впервые создал каталог светил и выделил разные виды звёзд, основываясь на интенсивности свечения. Он выделил 6 классов яркости, а всего в его каталоге было 850 светил.
В Средние века исследования звёздного неба продолжили персидские и арабские астрономы. Окончанием Средневековья стала интеллектуальная революция в Европе: одним из ярких событий той эпохи стало появление революционной концепции Джордано Бруно.
Вдохновлённый идеями Коперника, он пошёл дальше — Бруно первый уверенно высказал мысль, что Солнце — это звезда, одна из бесчисленного множества звёзд Вселенной. А Земля, по мнению итальянского мыслителя, — всего лишь рядовая планета (Бруно был уверен в существовании множества обитаемых планет у звёзд безграничного космоса). Но это была только гениальная догадка — возможности науки в ту эпоху были ещё очень ограниченны, и проверить смелую гипотезу Бруно было невозможно. Потребовались почти три века развития научных знаний, прежде чем эти идеи смогли быть доказаны.
Чтобы иметь право утверждать, что Солнце — звезда, надо было ещё установить общность физической природы светил. Решить эту задачу позволило применения спектрального анализа. Этот метод позволил определить химический состав Солнца и температуру его поверхности. А поскольку звёздные лучи дали спектры, аналогичные солнечному, тождественность физической природы Солнца и звёзд была установлена, и больше уже не могло быть сомнения в том, что Солнце — это одна из звёзд. Также было установлено, что звезды по своим спектрам могут быть разделены на несколько «спектральных классов».
В начале XX века астрономы Герцшпрунг и Рассел распределили известные звёзды на диаграмме, где на одной оси была нанесена «абсолютная звёздная величина», характеризующая полное излучение во всех диапазонах электромагнитных волн, а на другой оси — «спектральный класс» светила. Оказалось, что большая часть звёзд сгруппирована вдоль узкой кривой. Эта диаграмма стала основой научной классификации звёзд.
На её основе был создан «код» для обозначения звезды: сначала идёт буквенное обозначение основного спектрального класса, далее арабскими цифрами уточняется спектральный подкласс, потом римскими цифрами идёт класс светимости. Спектры звёзд образуют температурную последовательность О-В-A-F-G-К-М (цвета излучения, соответственно: голубой, бело-голубой, белый, жёлто-белый, жёлтый, оранжевый, красный).
По светимости различают Ia — самые яркие супергиганты, Ib — яркие супергиганты, II — яркие гиганты, III — нормальные гиганты, IV — субгиганты, V — карлики. К примеру, Солнце имеет класс G2V, то есть это звезда спектрального класса G (такие звезды имеют жёлтый цвет), подкласса 2, класс светимости V (карлик).
Солнце — звезда на окраине Галактики
Однако понять природу светил было невозможно, пока оставался тайной источник энергии звёзд. Лишь в XX веке, с развитием квантовой физики, эту загадку удалось решить — источником энергии Солнца (и подобных солнцу звёзд) является термоядерная реакция превращения водорода в гелий. Это открытие позволило понять, какие звёзды есть во Вселенной и каков жизненный путь светил.
С тех пор как впервые появилась догадка о единой природе звёзд и Солнца, прошло много веков. Мощные телескопы позволили доказать, что звезда на самом деле вовсе не крохотный огонёк, а невообразимых размеров шар раскалённого газа, в котором происходят реакции термоядерного синтеза при фантастических температурах в миллионы Кельвинов.
Все звёзды, которые можно увидеть на небосводе невооружённым глазом, находятся в галактике Млечный Путь. Солнце — тоже часть этой звёздной системы, причём расположено оно на её окраине. Трудно вообразить, как выглядело бы ночное небо, если бы Солнце находилось в центре Млечного Пути и Земля была бы освещена светом сотен близких звёзд.
Светила тысячелетиями казались вечными и неизменными — что бы ни происходило на Земле, звёздное небо не менялось. Однако астрономы установили, что небесные тела имеют свой жизненный срок, они рождаются и умирают. Звёзды формируются из космических скоплений водорода. Такие облака газа занимают огромные пространства и могут иметь колоссальную массу, равную сотням солнечных масс. Если облако оказывается достаточно плотным, начинают действовать гравитационные силы, вызывающие сжатие газа и его нагрев. По достижении определённого предела в нагретом и сжатом центре облака начинаются термоядерные реакции — и в космосе вспыхивает новая звезда.
Все объекты Вселенной, галактики и звезды образовались из сравнительно однородного газа, заполнившего космос после большого взрыва. Но незначительные флуктуации плотности привели к громадным различиям при процессах гравитационного сжатия — по этой причине звезды и галактики так сильно отличаются друг от друга.
Разный жизненный цикл
Вопреки интуитивным ожиданиям, малые звёзды живут дольше больших. Наименьшими размерами среди звёзд отличаются красные карлики, масса которых не превышает трети солнечной массы, а температура поверхности красного карлика достигает лишь 3500 К. Звёзды этого типа испускают очень мало света, иногда в 10000 раз меньше Солнца. Из-за низкой интенсивности термоядерного «горения» водорода красные карлики имеют очень большую продолжительность жизни — от десятков миллиардов до десятков триллионов лет (например, красный карлик с массой в 0,1 массы Солнца будет гореть 10 триллионов лет). Со временем красные карлики постепенно сжимаются и всё больше нагреваются, пока не израсходуют весь запас водородного топлива (впрочем, до этого момента ещё далеко — ведь наша Вселенная возникла «всего лишь» 13 миллиардов лет назад). Следующий класс звёзд — это так называемые жёлтые карлики — небольшие звезды, имеющие массу от 0,8 до 1,2 массы Солнца и температуру поверхности 5000-6000 К.
Самым известным жёлтым карликом, разумеется, является наше Солнце. За свою долгую жизнь (миллиарды лет) они «горят» все более интенсивно. Например, наша звезда увеличивает свою яркость примерно на 10% каждый миллиард лет. С повышением температуры термоядерные реакции в звезде усложняются — гелий начинает превращаться в бериллий, а затем и в иные элементы таблицы Менделеева вплоть до железа. Через 5,4 млрд. лет Солнце достигнет своего максимально возможного размера, превратившись в красного гиганта (типичная судьба жёлтых карликов). При этом Солнце увеличится так, что его внешняя оболочка будет простираться до современной орбиты Земли (излучение нашего светила станет в 3 тысячи раз сильнее, чем сейчас). Затем, побыв красным гигантом примерно 100 миллионов лет, Солнце сбросит свои внешние оболочки и сожмётся в белого карлика.
Стремительное сжатие и чёрная дыра…
Иная судьба у звёзд-гигантов. Такая звезда «живёт», пока сохраняется «баланс сил» между силами гравитации, сжимающими её, и термоядерными реакциями, которые излучают энергию и стремятся «растолкать» вещество. Сгорает такая звезда очень быстро (по звёздным меркам) — за какие-то жалкие сотни миллионов лет. Когда термоядерные реакции в звезде слабеют («горючее» к тому времени оказывается выгоревшим), силы гравитации оказываются сильнее и давление излучения больше не в состоянии удерживать вещество от сжатия. Происходит катастрофически быстрый коллапс — за несколько секунд объём ядра звезды уменьшается в 100000 раз!
Стремительное сжатие приводит к тому, что кинетическая энергия вещества переходит в тепло и температура поднимается до сотен миллиардов Кельвинов, а светимость гибнущей звезды при этом возрастает в несколько миллиардов раз — «взрыв сверхновой» выжигает все в соседних областях космоса. В ядре гибнущей звезды электроны «вдавливаются» в протоны, так что внутри ядра остаются практически одни нейтроны.
Поверхностные же слои звезды взрываются, причём в условиях гигантских температур и чудовищного давления идут реакции с образованием тяжёлых элементов (вплоть до урана). Оставшееся после взрыва ядро становится нейтронной звездой. Это удивительный космический объект малого объёма, но чудовищной плотности. Диаметр обычной нейтронной звезды всего лишь 10-20 км, но при этом плотность вещества составляет 665 миллионов тонн на один кубический сантиметр!
Впрочем, не все сверхновые превращаются в нейтронные звезды. Когда масса звезды превосходит определённый предел (так называемый второй предел Чандрасекара), в процессе взрыва сверхновой остаётся слишком большая масса вещества, и гравитационное давление не в состоянии сдерживать ничто. Процесс становится необратим — всё вещество стягивается в одну точку, и образуется чёрная дыра — провал, безвозвратно поглощающий всё, даже солнечный свет.
911mir-znaniy.com
Какой бывает ЗВЕЗДА — Карта слов и выражений русского языка
Делаем Карту слов лучше вместе
Привет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать Карту слов. Я отлично умею считать, но пока плохо понимаю, как устроен ваш мир. Помоги мне разобраться!
Спасибо! Я обязательно научусь отличать широко распространённые слова от узкоспециальных.
Насколько понятно и распространено слово спрессовать (глагол), спрессовал:
Это слово знает
каждый ребёнок
Достаточно
распространено
Нечасто встретишь
в повседневной ситуации
Узкоспециальный
термин
Что это?
Впервые вижу
Другое
Не знаю
Предложения со словом «звезда»:
- На пике фазы красного гиганта звезда будет в две тысячи раз ярче, чем сейчас.
- Было ощущение, как будто это не яркие точки звёзд на небе, а проблески синего неба на звёздном песке.
- Ты явилась одна, при свете звёзд. Ты ищешь любви. Я её тебе дам.
- (все предложения)
Оставить комментарий
Текст комментария:
Дополнительно:
kartaslov.ru
Какие бывают цвета звёзд? | какиебывают.рф
В ясную ночь, присмотревшись, можно увидеть на небе мириады разноцветных звезд. Задумывались ли вы, от чего зависит оттенок их мерцания, и какие бывают цвета небесных светил?
Цвет звезды определяется температурой ее поверхности. Россыпь светил, словно драгоценные камни, имеет бесконечно разнообразные оттенки, словно волшебная палитра художника. Чем горячее объект, тем энергия излучения с его поверхности выше, а значит, короче длина испускаемых волн.
Даже незначительная разница в длине волны меняет воспринимаемый человеческим глазом цвет. Самые длинные волны имеют красный оттенок, с увеличением температуры он меняется на оранжевый, желтый, переходит в белый, а затем становится бело-синим.
Газовая оболочка светил выполняет функции идеального излучателя. По цвету звезды можно вычислить ее возраст и температуру поверхности. Конечно, оттенок при этом определяется не «на глаз», а с помощью специального инструмента — спектрографа.
Изучение спектра звезд — фундамент астрофизики нашего времени. То, какие бывают цвета небесных светил, является чаще всего единственной доступной для нас информацией о них.
Голубые звезды
Звезды голубого цвета — самые большие и горячие. Температура их внешних слоев составляет, в среднем, 10000 по Кельвину, а может достигать и 40000 для отдельных звездных гигантов.
В этом диапазоне излучают новые звезды, только начинающие свой «жизненный путь». Например, Ригель, одна из двух главных светил созвездия Ориона, голубовато-белая.
Желтые звезды
Центр нашей планетной системы — Солнце — имеет температуру поверхности, превосходящую 6000 по Кельвину. Из космоса оно и подобные ему светила выглядят ослепительно белыми, хотя с Земли кажутся, скорее, желтыми. Золотые звезды имеют средний возраст.
Из других известных нам светил белой звездой является и Сириус, хотя на глаз его цвет определить довольно сложно. Это происходит потому, что он занимает низкое положение над горизонтом, и по пути к нам его излучение сильно искажается за счет многократного преломления. В средних широтах Сириус, часто мерцая, способен всего за полсекунды продемонстрировать весь цветовой спектр!
Красные звезды
Темный красноватый оттенок имеют звезды с низкой температурой, например, красные карлики, масса которых составляет менее 7,5% от веса Солнца. Их температура ниже 3500 по Кельвину, и хотя их свечение представляет собой богатый перелив множества цветов и оттенков, мы видим его красным.
Гигантские светила, чье водородное топливо закончилось, также выглядят красными или даже коричневыми. В целом, в этом диапазоне спектра находится излучение старых и остывающих звезд.
Отчетливый красный оттенок имеет вторая из главных звезд созвездия Ориона, Бетельгейзе, а чуть правее и выше ее располагается на карте неба Альдебаран, имеющий оранжевый цвет.
Старейшая красная звезда из ныне существующих — HE 1523-0901 из созвездия Весов — гигантское светило второго поколения, найденное на окраинах нашей галактики на удалении в 7500 световых лет от Солнца. Ее возможный возраст составляет около 13,2 миллиарда лет, что не намного меньше предполагаемого возраста Вселенной.
xn--80aacenrmb1f7d9a.xn--p1ai
виды звезд и их классификация по цвету и размеру
Каждый человек знает, как смотрятся звезды на небе. Крошечные, сияющие холодным белоснежным светом огоньки. В древности люди не могли придумать объяснения этому явлению. Звезды считали очами богов, душами умерших предков, хранителями и заступниками, оберегающими покой человека в ночной тьме. Тогда никто и подумать не мог, что Солнце — это тоже звезда.
Что такое звезда
Много веков прошло, прежде чем люди поняли, что представляют собой звезды. Виды звезд, их характеристики, представления о происходящих там химических и физических процессах — это новая область познания. Древнейшие астрологи даже предположить не могли, что такое светило на самом деле совсем не крохотный огонек, а невообразимых размеров шар раскаленного газа, в каком происходят реакции термоядерного синтеза. Есть странный парадокс в том, что неяркий звездный свет — это ослепительное сияние ядерной реакции, а уютное солнечное тепло — чудовищный жар миллионов кельвинов.
Все звезды, которые можно увидеть на небосводе невооруженным глазом, находятся в галактике Млечный Путь. Солнце — тоже часть этой звездной системы, причем расположено оно на ее окраине. Невозможно себе вообразить, как смотрелось бы ночное небо, если б Солнце находилось в центре Млечного Пути. Ведь количество звезд в этой галактике — более 200 миллиардов.
Немного об истории астрономии
Древнейшие астрологи тоже могли бы рассказать необычное и увлекательное о звездах на небе. Уже шумеры выделяли отдельные созвездия и зодиакальный круг, они же в первый раз рассчитали деление полного угла на 3600. Они же создали лунный календарь и смогли синхронизировать его с солнечным. Египтяне считали, что Земля находится в центре Вселенной, но при этом знали, что Меркурий и Венера крутятся вокруг Солнца.
В Китае астрономией как наукой занимались уже в конце ІІІ тысячелетия до н. э., а первые обсерватории появились в XII в. до н. э. Они изучали лунные и солнечные затмения, сумев при этом понять их причину и даже рассчитав прогнозные даты, наблюдали метеоритные потоки и траектории комет.
Древнейшие инки знали различия между звездами и планетами. Есть косвенные подтверждения того, что им были известны Галилеевы спутники Юпитера и зрительная размытость очертаний диска Венеры, обусловленная наличием на планете атмосферы.
Античные греки смогли обосновать шарообразность Земли, выдвинули предположение о гелиоцентричности системы. Они пытались рассчитать поперечник Солнца, пускай и ошибочно. Но греки были первыми, кто в принципе предположил, что Солнце больше Земли, ранее все, полагаясь на зрительные наблюдения, считали по другому. Грек Гиппарх в первый раз создал каталог светил и выделил разные виды звезд. Систематизация звезд в этом научном труде опиралась на интенсивность свечения. Гиппарх выделил 6 классов яркости, всего в каталоге было 850 светил.
На что обращали внимание античные астрологи
Первоначальная систематизация звезд основывалась на их яркости. Ведь конкретно этот критерий является единственно легкодоступным для астролога, вооруженного только телескопом. Самые яркие либо обладающие уникальными видимыми свойствами звезды даже получали собственные имена, причем у каждого народа они свои. Так, Денеб, Ригель и Алголь — названия арабские, Сириус — латинское, а Антарес — греческое. Полярная звезда в каждом народе имеет собственное название. Это, пожалуй, одна из самых принципиальных в «практическом смысле» звезд. Ее координаты на ночном небосводе неизменны, несмотря на вращение земли. Если остальные звезды движутся по небу, проходя путь от восхода до заката, то Полярная звезда не меняет своего местоположения. Поэтому конкретно ее использовали моряки и путешественники в качестве надежного ориентира. Кстати, вопреки распространенному заблуждению, это совсем не самая яркая звезда на небосклоне. Полярная звезда снаружи никак не выделяется — ни по размерам, ни по интенсивности свечения. Найти ее можно, только если знать, куда смотреть. Она располагается на самом конце «рукоятки ковша» Малой Медведицы.
На чем основывается звездная систематизация
Современные астрологи, отвечая на вопрос о том, какие виды звезд бывают, навряд ли станут упоминать яркость свечения либо расположение на ночном небосводе. Разве что в порядке исторического экскурса либо в лекции, рассчитанной на совсем уж дальную от астрономии аудиторию.
Современная систематизация звезд основывается на их спектральном анализе. При этом обычно еще указывают массу, светимость и радиус небесного тела. Все эти показатели даются в соотношении с Солнцем, то есть конкретно его характеристики приняты в качестве единиц измерения.
Систематизация звезд опирается на такой критерий, как абсолютная звездная величина. Это видимая степень яркости небесного тела без атмосферы, условно расположенного на расстоянии 10 парсек от точки наблюдения.
Кроме этого учитывают переменности блеска и размеры звезды. Виды звезд в текущее время определяются их спектральным классом и уже детальнее — подклассом. Астрологи Рассел и Герцшпрунг независимо друг от друга проанализировали зависимость между светимостью, абсолютной звездной величиной, температурной поверхностью и спектральным классом светил. Они построили диаграмму с соответствующими осями координат и обнаружили, что результат совсем не хаотичен. Светила на графике располагались отчетливо различимыми группами. Диаграмма позволяет, зная спектральный класс звезды, определить хотя бы с приблизительной точностью ее абсолютную звездную величину.
Как рождаются звезды
Эта диаграмма послужила наглядным подтверждением в пользу современной теории эволюции данных небесных тел. На графике отчетливо видно, что самым многочисленным классом являются относящиеся к так называемой главной последовательности звезды. Виды звезд, принадлежащих к этому сегменту, находятся в наиболее распространенной на этот момент во Вселенной точке развития. Это этап развития светила, при котором энергия, затраченная на излучение, компенсируется полученной в процессе термоядерной реакции. Продолжительность пребывания на данном этапе развития определяется массой небесного тела и процентным содержанием элементов тяжелее гелия.
Общепризнанная на этот момент теория эволюции звезд говорит, что на начальном этапе развития светило представляет собой разряженное циклопическое газовое облако. Под воздействием собственного тяготения оно сжимается, постепенно превращаясь в шар. Чем сильнее сжатие, тем лучше гравитационная энергия переходит в тепловую. Газ раскаляется, и когда температура добивается 15-20 млн К, в новорожденной звезде запускается термоядерная реакция. После этого процесс гравитационного сжатия приостанавливается.
Основной период жизни звезды
Поначалу в недрах юного светила преобладают реакции водородного цикла. Это самый долгий период жизни звезды. Виды звезд, находящихся на этом этапе развития, и представлены в самой массовой главной последовательности описанной выше диаграммы. Со временам водород в ядре светила завершается, превратившись в гелий. После этого термоядерное горение может быть только на периферии ядра. Звезда становится ярче, ее наружные слои существенно расширяются, а температура понижается. Небесное тело превращается в красный гигант. Этот период жизни звезды намного короче предыдущего. Предстоящая ее судьба исследована мало. Есть различные предположения, но достоверных им подтверждений пока не получено. Самая распространенная теория говорит, что когда гелия становится слишком много, звездное ядро, не выдерживая собственной массы, сжимается. Температура растет до тех пор, пока уже гелий не вступает в термоядерную реакцию. Чудовищные температуры приводят к очередному расширению, и звезда превращается в красного гиганта. Предстоящая судьба светила, по предположениям ученых, находится в зависимости от его массы. Но теории, касающиеся этого, всего лишь результат компьютерного моделирования, не подтвержденный наблюдениями.
Остывающие звезды
Предположительно, красные гиганты с малой массой будут сжиматься, превращаясь в карликов и постепенно остывая. Звезды средней массы могут трансформироваться в планетарные туманности, при этом в центре такого образования продолжит свое существование лишенное наружных покровов ядро, постепенно остывая и превращаясь в белоснежного лилипута. Если центральная звезда испускала существенное инфракрасное излучение, появляются условия для активации в расширяющейся газовой оболочке планетарной туманности космического мазера.
Массивные светила, сжимаясь, могут достигать такого уровня давления, что электроны практически вминаются в атомные ядра, превращаясь в нейтроны. Поскольку между этими частицами нет сил электростатического отталкивания, звезда может сжаться до размера нескольких км. При этом ее плотность превысит плотность воды в 100 миллионов раз. Такая звезда называется нейтронной и представляет собой, по сути, огромное атомное ядро.
Сверхмассивные звезды продолжают свое существование, последовательно синтезируя в процессе термоядерных реакций из гелия — углерод, потом кислород, из него — кремний и, наконец, железо. На этом этапе термоядерной реакции и происходит взрыв сверхновой. Сверхновые звезды, в свою очередь, могут превратиться в нейтронные либо, если их масса довольно велика, продолжить сжатие до критического предела и образовать черные дыры.
Размеры
Систематизация звезд по размеру может быть реализована двойственно. Физический размер звезды может определяться ее радиусом. Единицей измерения в данном случае выступает радиус Солнца. Существуют лилипуты, звезды средней величины, гиганты и сверхгиганты. Кстати, само Солнце является как раз лилипутом. Радиус нейтронных звезд может достигать всего нескольких км. А в сверхгиганте целиком поместится орбита планеты Марс. Под размером звезды может также пониматься ее масса. Она тесно связана с поперечником светила. Чем звезда больше, тем ниже ее плотность, и наоборот, чем светило меньше, тем плотность выше. Этот критерий вирируется не так уж сильно. Звезд, которые могли быть больше либо меньше Солнца в 10 раз, очень мало. Большая часть светил укладывается в интервал от 60 до 0,03 солнечных масс. Плотность Солнца, принимаемая за стартовый показатель, составляет 1,43 г/см3. Плотность белоснежных карликов добивается 1012 г/см3, а плотность разреженных сверхгигантов может быть в миллионы раз меньше солнечной.
В стандартной систематизации звезд схема распределения по массе смотрится следующим образом. К малым относят светила с массой от 0,08 до 0,5 солнечной. К умеренным — от 0,5 до 8 солнечных масс, а к массивным — от 8 и поболее.
Систематизация звезд. От голубых до белоснежных
Систематизация звезд по цвету на самом деле опирается не на видимое свечение тела, а на спектральные характеристики. Спектр излучения объекта определяется химическим составом звезды, от него же зависит ее температура.
Наиболее распространенной является Гарвардская систематизация, созданная сначала 20 века. Согласно принятым тогда стандартам систематизация звезд по цвету предполагает деление на 7 типов.
Так, звезды с самой высочайшей температурой, от 30 до 60 тыс. К, относят к светилам класса О. Они голубого цвета, масса подобных небесных тел добивается 60 солнечных масс (с. м.), а радиус — 15 солнечных радиусов (с. р.). Линии водорода и гелия в их спектре довольно слабые. Светимость подобных небесных объектов может достигать 1 млн 400 тыс. солнечных светимостей (с. с.).
К звездам класса В относят светила с температурой от 10 до 30 тыс. К. Это небесные тела бело-голубого цвета, их масса начинается от 18 с. м., а радиус — от 7 с. м. Самая низкая светимость объектов такого класса составляет 20 тыс. с. с., а линии водорода в спектре усиливаются, достигая средних значений.
У звезд класса А температура колеблется от 7,5 до 10 тыс. К, они белоснежного цвета. Минимальная масса таких небесных тел начинается от 3,1 с. м., а радиус — от 2,1 с. р. Светимость объектов находится в границах от 80 до 20 тыс. с. с. Линии водорода в спектре этих звезд сильные, появляются линии металлов.
Объекты класса F на самом деле желто-белого цвета, но смотрятся белоснежными. Их температура колеблется в пределах от 6 до 7,5 тыс. К, масса варьируется от 1,7 до 3,1 с.м., радиус — от 1,3 до 2,1 с. р. Светимость таких звезд варьируется от 6 до 80 с. с. Линии водорода в спектре ослабевают, линии металлов, наоборот, усиливаются.
Таким образом, все виды белоснежных звезд попадают в пределы классов от А до F. Далее, согласно систематизации, следуют желтоватые и оранжевые светила.
Желтоватые, оранжевые и красные звезды
Виды звезд по цвету распределяются от голубых к красным, по мере понижения температуры и уменьшения размеров и светимости объекта.
Звезды класса G, к которым относится и Солнце, добиваются температуры от 5 до 6 тыс. К, они желтоватого цвета. Масса таких объектов — от 1,1 до 1,7 с. м., радиус — от 1,1 до 1,3 с. р. Светимость — от 1,2 до 6 с. с. Спектральные линии гелия и металлов интенсивны, линии водорода все слабее.
Светила, относящиеся к классу К, имеют температуру от 3,5 до 5 тыс. К. Смотрятся они желто-оранжевыми, но настоящий цвет этих звезд — оранжевый. Радиус данных объектов находится в промежутке от 0,9 до 1,1 с. р., масса — от 0,8 до 1,1 с. м. Яркость колеблется от 0,4 до 1,2 с. с. Линии водорода практически незаметны, линии металлов очень сильны.
Самые холодные и маленькие звезды — класса М. Их температура всего 2,5 — 3,5 тыс. К и кажутся они красными, хотя на самом деле эти объекты оранжево-красного цвета. Масса звезд находится в промежутке от 0,3 до 0,8 с. м., радиус — от 0,4 до 0,9 с. р. Светимость — всего 0,04 — 0,4 с. с. Это умирающие звезды. Холоднее их только недавно открытые коричневые лилипуты. Для них выделили отдельный класс М-Т.
nlo-mir.ru