Фотосинтез какую роль выполняет – какова роль фотосинтеза в жизни растений

какова роль фотосинтеза в жизни растений

Фотосинтез идет на свету круглый год. И он людям дает пищу и кислород. Очень важный процесс- фотосинтез, друзья, Без него на Земле обойтись нам нельзя. Фрукты, овощи, хлеб, уголь, сено, дрова – Фотосинтез всему этому голова. Воздух чист будет, свеж, как легко им дышать! И озоновый слой будет нас защищать.

получение энергии для химических реакций внутри организма

Почти все живое на Земле прямо или косвенно (как в случае с животными) зависит от фотосинтеза. В процессе фотосинтеза создаются источники углерода и энергии, доступные для живых организмов; кроме того, выделяется кислород, жизненно необходимый для аэробных форм жизни. Человечество тоже зависит от фотосинтеза, поскольку пользуется созданными в течение миллионов лет ископаемыми видами топлива. Из общего количества солнечной радиации, посылаемой к Земле, около половины достигает ее поверхности, остальное поглощается, отражается или рассеивается в атмосфере. При этом только около 50% достигшей Земли радиации может возбуждать фотосинтез и, по приблизительным оценкам, примерно 0,2% используется растениями для синтеза веществ (около 0,5% той энергии, которая фактически достигает листа) . Этой небольшой частью доступной энергии, в сущности, поддерживается вся жизнь. Около 40% всего фотосинтеза приходится на мельчайшие водоросли — фитопланктон, живущий в океане. Фотосинтез является основным источником биологической энергии, фотосинтезирующие автотрофы используют её для синтеза органических веществ из неорганических, гетеротрофы существуют за счёт энергии, запасённой автотрофами в виде химических связей, высвобождая её в процессах дыхания и брожения. Энергия, получаемая человечеством при сжигании ископаемого топлива (уголь, нефть, природный газ, торф) , также является запасённой в процессе фотосинтеза. Фотосинтез является главным входом неорганического углерода в биологический цикл. Весь свободный кислород атмосферы — биогенного происхождения и является побочным продуктом фотосинтеза. Формирование окислительной атмосферы (кислородная катастрофа) полностью изменило состояние земной поверхности, сделало возможным появление дыхания, а в дальнейшем, после образования озонового слоя, позволило жизни выйти на сушу. Фотосинтез (от греч. φωτο- — свет и σύνθεσις — синтез, совмещение, помещение вместе) — процесс образования органических веществ из углекислого газа и воды на свету при участии фотосинтетических пигментов (хлорофилл у растений, бактериохлорофилл и бактериородопсин у бактерий) . В современной физиологии растений под фотосинтезом чаще понимается фотоавтотрофная функция — совокупность процессов поглощения, превращения и использования энергии квантов света в различных эндэргонических реакциях, в том числе превращения углекислого газа в органические вещества.

при фотосинтезе у растений кислород выделяется как отход производства

Фотосинтез обеспечивает энергией всех живых существ на планете, включая человека. В процессе фотосинтеза, в качестве побочного продукта, выделяется кислород, используемый живыми организмами для дыхания.

Фотосинтез идет на свету круглый год. И он людям дает пищу и кислород. Очень важный процесс- фотосинтез, друзья, Без него на Земле обойтись нам нельзя. Фрукты, овощи, хлеб, уголь, сено, дрова – Фотосинтез всему этому голова. Воздух чист будет, свеж, как легко им дышать! И озоновый слой будет нас защищать.

touch.otvet.mail.ru

Значение фотосинтеза. Значение фотосинтеза в природе. Результат фотосинтеза :: SYL.ru

Фотосинтезом называют процесс, результатом которого является образование и выделение кислорода клетками растений и некоторыми видами бактерий.

Основное понятие

Фотосинтез – это не что иное, как цепочка уникальных физико-химических реакций. В чем же он заключается? Зеленые растения, а также некоторые бактерии поглощают солнечные лучи и преобразовывают их в электромагнитную энергию. Конечным результатом фотосинтеза является энергия химических связей разнообразных органических соединений.

В растении, которое осветили солнечные лучи, в определенной последовательности происходят окислительно-восстановительные реакции. Вода и водород, представляющие собой доноров-восстановителей, перемещаются в виде электронов к акцептору-окислителю (углекислому газу и ацетату). В результате образуются восстановленные соединения углеводов, а также кислород, который и выделяют растения.

История изучения фотосинтеза

На протяжении многих тысячелетий человек был убежден в том, что питание растения происходит по его корневой системе через почву. В начале шестнадцатого века голландским натуралистом Яном Ван Гельмонтом был проведен эксперимент с выращиванием растения в горшке. После взвешивания почвы до посадки и после того как растение достигло определенных размеров, им был сделан вывод о том, что все представители флоры получают питательные вещества в основном из воды. Этой теории придерживались ученые в течение двух последующих столетий.

Неожиданное для всех, но правильное предположение о питании растений было сделано в 1771 г. химиком из Англии Джозефом Пристли. Поставленные им опыты убедительно доказали, что растения способны очистить воздух, который ранее был не пригоден для дыхания человека. Несколько позже был сделан вывод о том, данные процессы невозможны без участия солнечного света. Ученые выяснили, что зеленые листочки растений не просто превращают полученный ими углекислый газ в кислород. Без этого процесса невозможна их жизнь. В совокупности с водой и минеральными солями углекислый газ служит пищей растениям. В этом заключено основное значение фотосинтеза для всех представителей флоры.

Роль кислорода для жизни на Земле

Опыты, которые были проведены английским химиком Пристли, помогли человечеству объяснить, почему воздух на нашей планете остается пригодным для дыхания. Ведь жизнь поддерживается, несмотря на существование огромного количества живых организмов и горение бесчисленного количества огней.

Возникновение жизни на Земле миллиарды лет назад было попросту невозможно. Атмосфера нашей планеты не содержала в себе свободного кислорода. Все изменилось с появлением растений. Весь находящийся сегодня в атмосфере кислород – это результат фотосинтеза, происходящего в зеленых листьях. Данный процесс изменил облик Земли и дал толчок к развитию жизни. Это бесценное значение фотосинтеза было до конца осознано человечеством лишь в конце 18 века.

Не является преувеличением утверждение, что само существование людей на нашей планете зависит от того, каково состояние растительного мира. Значение фотосинтеза заключено в его ведущей роли для протекания различных биосферных процессов. В глобальных масштабах эта удивительная физико-химическая реакция приводит к образованию органических веществ из неорганических.

Классификация процессов фотосинтеза

В зеленом листе происходит три важных реакции. Они и представляют собой фотосинтез. Таблица, в которую заносят данные реакции, применяется при изучении биологии. В ее строки вносят:

— фотосинтез;
— газообмен;
— испарение воды.

Те физико-химические реакции, которые происходят в растении при свете дня, позволяют зеленым листикам выделять двуокись углерода и кислород. В темное время суток – только первый из этих двух компонентов.

Синтез хлорофилла в некоторых растениях происходит даже при слабом и рассеянном освещении.

Основные этапы

Различают две фазы фотосинтеза, которые тесно связаны между собой. На первом этапе энергия лучей света преобразуется в высокоэнергетические соединения АТФ и универсальные восстановители НАДФН. Эти два элемента являются первичными продуктами фотосинтеза.

На втором (темновом) этапе полученные АТФ и НАДФН используются для фиксации углекислоты вплоть до ее восстановления в углеводы. Две фазы фотосинтеза имеют различия не только во времени. Они происходят и в различном пространстве. Тому, кто изучает по биологии тему «фотосинтез», таблица с точным указанием характеристик двух фаз поможет в более точном понимании процесса.

Механизм выработки кислорода

После поглощения растениями углекислого газа в них происходит синтез питательных веществ. Данный процесс осуществляется в зеленых пигментах, называемых хлорофиллами, под воздействием солнечных лучей. Основными составляющими этой удивительной реакции являются:

— свет;
— хлоропласты;
— вода;
— углекислый газ;
— температура.

Последовательность фотосинтеза

Выработка растениями кислорода осуществляется поэтапно. Основными стадиями фотосинтеза являются следующие:

— поглощение света хлорофиллами;
— разделение хлоропластами (внутриклеточными органоидами зеленого пигмента) полученной из почвы воды на кислород и водород;
— перемещение одной части кислорода в атмосферу, а другой – для осуществления дыхательного процесса растениями;
— образование молекул сахара в белковых гранулах (пиреноидах) растений;
— производство крахмалов, витаминов, жиров и т.д. в результате смешивания сахара с азотом.

Несмотря на то, что для осуществления фотосинтеза необходим солнечный свет, данная реакция способна протекать и при искусственном освещении.

Роль растительного мира для Земли

Основные процессы, происходящие в зеленом листе, уже достаточно полно изучила наука биология. Значение фотосинтеза для биосферы огромно. Это единственная реакция, приводящая к росту количества свободной энергии.

В процессе фотосинтеза каждый год происходит образование ста пятидесяти миллиардов тонн вещества органического типа. Кроме того, за указанный период растениями выделяется практически 200 млн. тонн кислорода. В связи с этим можно утверждать, что роль фотосинтеза огромна для всего человечества, так как данный процесс служит основным источником энергии на Земле.

В процессе уникальной физико-химической реакции происходит круговорот углерода, кислорода, а также многих других элементов. Из этого вытекает еще одно немаловажное значение фотосинтеза в природе. Данной реакцией поддерживается определенный состав атмосферы, при котором возможна жизнь на Земле.

Процесс, происходящий в растениях, ограничивает количество углекислого газа, не позволяя ему скапливаться в увеличенных концентрациях. Это также немаловажное значение фотосинтеза. На Земле благодаря зеленым растениям не создается так называемого парникового эффекта. Флора надежно защищает нашу планету от перегрева.

Растительный мир как основа питания

Немаловажна роль фотосинтеза для лесного и сельского хозяйства. Растительный мир является питательной базой для всех гетеротрофных организмов. Однако значение фотосинтеза кроется не только в поглощении зелеными листьями углекислого газа и получения такого готового продукта уникальной реакции, как сахар. Растения способны преобразовывать азотистые и серные соединения в вещества, из которых слагаются их тела.

Как же это происходит? Каково значение фотосинтеза в жизни растений? Данный процесс осуществляется посредством получения растением ионов нитратов. Эти элементы находятся в почвенной воде. В растение они попадают благодаря корневой системе. Клеточки зеленого организма перерабатывают ионы нитратов в аминокислоты, из которых слагаются белковые цепочки. В процессе фотосинтеза образуются и компоненты жиров. Они для растений являются важными запасными веществами. Так, в семенах многих плодов находится питательное масло. Этот продукт важен и для человека, так как находит применение в пищевой и сельскохозяйственной промышленности.

Роль фотосинтеза в получении урожая

В мировой практике работы сельскохозяйственных предприятий широко используются результаты изучения основных закономерностей развития и роста растений. Как известно, основой формирования урожая является фотосинтез. Его интенсивность, в свою очередь, зависит от водного режима культур, а также от их минерального питания. Каким же образом человек добивается увеличения плотности посевов и размеров листьев для того, чтобы растение максимально использовало энергию Солнца и забирало углекислый газ из атмосферы? Для этого оптимизируются условия минерального питания и водоснабжения сельскохозяйственных культур.

Научно доказано, что урожайность зависит от площади зеленых листьев, а также от интенсивности и длительности протекающих в них процессов. Но в то же время увеличение плотности посевов приводит к затенению листьев. К ним не может пробиться солнечный свет, и из-за ухудшения вентиляции воздушных масс в малых объемах поступает углекислый газ. В итоге происходит снижение активности процесса фотосинтеза и уменьшается продуктивность растений.

Роль фотосинтеза для биосферы

По самым приблизительным подсчетам, только автотрофные растения, обитающие в водах Мирового океана, ежегодно превращают от 20 до 155 млрд. тонн углерода в органическое вещество. И это при том, что энергия солнечных лучей используется ими лишь на 0,11%. Что касается наземных растений, то они ежегодно поглощают от 16 до 24 млрд. тонн углерода. Все эти данные убедительно говорят о том, насколько велико значение фотосинтеза в природе. Только в результате данной реакции атмосфера восполняется необходимым для жизни молекулярным кислородом, который необходим для горения, дыхания и разнообразной производственной деятельности. Некоторые ученые полагают, что в случае повышения содержания углекислого газа в атмосфере происходит увеличение скорости фотосинтеза. При этом атмосфера пополняется недостающим кислородом.

Космическая роль фотосинтеза

Зеленые растения являются посредниками между нашей планетой и Солнцем. Они улавливают энергию небесного светила и обеспечивают возможность существования жизни на нашей планете.

Фотосинтез представляет собой процесс, о котором можно говорить в космических масштабах, так как он в свое время способствовал преображению образа нашей планеты. Благодаря реакции, проходящей в зеленых листьях, энергия солнечных лучей не рассеивается в пространстве. Она переходит в химическую энергию вновь образованных органических веществ.

Человеческому обществу продукты фотосинтеза нужны не только для пищи, но и для осуществления хозяйственной деятельности.

Однако человечеству важны не только те лучи солнца, которые падают на нашу Землю в настоящее время. Крайне необходимы для жизни и осуществления производственной деятельности те продукты фотосинтеза, которые были получены миллионы лет назад. Они находятся в недрах планеты в виде пластов каменного угля, горючего газа и нефти, торфяных месторождений.

www.syl.ru

Роль фотосинтеза — Науколандия

Процесс фотосинтеза для жизни на Земле имеет не просто важное значение, а, можно сказать, определяющее. Не будь этого процесса, вряд ли бы жизнь на Земле смогла эволюционировать дальше бактерий. Для осуществления любого процесса в природе нужна энергия. На Земле она берется от Солнца. Солнечный свет улавливается растениями и преобразуется в энергию химических связей органических соединений. Это преобразование и есть фотосинтез.

Остальные организмы на Земле (за исключением некоторых бактерий) используют органические вещества растений, чтобы получить энергию для своей жизни. Это не значит, что все организмы едят растения. Например, хищники едят травоядных животных, а не растения. Однако энергия, которая хранится в травоядных животных, получена ими именно из растений.

Помимо запаса энергии и питания почти всего живого на Земле, фотосинтез важен и по другим причинам.

В процессе фотосинтеза выделяется кислород. Кислород необходим для процесса дыхания. При дыхания происходит обратных фотосинтезу процесс. Органические вещества окисляются, разрушаются и выделяется энергия, которую можно использовать на различные процессы жизнедеятельности (ходить, думать, расти и т. д.). Когда на Земле еще не было растений, то в воздухе кислорода почти не было. Примитивные живые организмы, обитавшие в те времена, окисляли органические вещества другими способами, не с помощью кислорода. Это было не эффективно. Благодаря кислородному дыханию живой мир получил возможность широкого и сложного развития. А кислород в атмосфере появился благодаря растениям и процессу фотосинтеза.

В стратосфере (это выше тропосферы — самого нижнего слоя атмосферы) кислород под действием солнечного излучения превращается в озон. Озон защищает живое на Земле от опасного ультрафиолетового солнечного излучения. Без озонового слоя жизнь не могла бы в процессе эволюции выйти из моря на сушу.

В процессе фотосинтеза из атмосферы поглощается углекислый газ. Углекислый газ выделяется в процессе дыхания. Если бы он не поглощался, то накапливался бы в атмосфере и влиял наряду с другими газами на увеличение так называемого парникового эффекта. Парниковый эффект заключается в повышении температуры в нижних слоях атмосферы. При этом может начать меняться климат, начнут таять ледники, уровень океанов поднимется, в результате чего могут быть затоплены прибрежные земли и возникнут другие негативные последствия.

Во все органические вещества входит химический элемент углерод. Именно растения связывают его в органические вещества (глюкозу), получая из неорганических (углекислого газа). И делают они это в процессе фотосинтеза. В дальнейшем, «путешествуя» по пищевым цепям, углерод переходит из одних органических соединений в другие. В конечном итоге, при гибели организмов и их разложении, углерод снова переходит в неорганические вещества.

Для человечества фотосинтез также имеет важное значение. Уголь, торф, нефть, природный газ — это остатки растений и других живых организмов, накопившиеся за сотни миллионов лет. Они служат нам источником дополнительной энергии, что позволяет цивилизации развиваться.

scienceland.info

Фотосинтез и его роль в биосфере

Фотосинтез – образование органических веществ зелеными растениями и некоторыми бактериями с использованием энергии солнечного света. В ходе фотосинтеза происходит поглощение из атмосферы диоксида углерода и выделение кислорода.

Первым обнаружил, что растения выделяют кислород, английский химик и философ Джозеф Пристли около 1770. Вскоре было установлено, что для этого необходим свет и что кислород выделяют только зеленые части растений. Затем исследователи нашли, что для питания растений требуется диоксид углерода и вода, из которых создается большая часть массы растений. В 1817 французские химики Пьер Жозеф Пелатье (1788–1842) и Жозеф Бьенеме Каванту (1795–1877) выделили зеленый пигмент хлорофилл (по-гречески cróz – chloros, зеленый; julln – phyllon, лист). Позднее российский ученый Климент Аркадьевич Тимирязев (1843–1920) показал, что фотосинтез проходит с наибольшей интенсивностью в тех областях солнечного спектра, где находятся максимумы поглощения хлорофилла.

К середине 19 в. было установлено, что фотосинтез является процессом, как бы обратным дыхательному. Французский ученый Жан Батист Буссенго (1802–1887) в своих работах, опубликованных в это время, утверждал, что в процессе фотосинтеза происходит выделение кислорода из углекислого газа. Это мнение в научной литературе господствовало длительное время.

В 1860-х было высказано предположение, что диоксид углерода в растениях восстанавливается до органических кислот, в частности, муравьиной и щавелевой. Затем эти кислоты при дальнейшем восстановлении переходят в углеводы. В 1861 русский химик Александр Михайлович Бутлеров получил при действии известковой воды на формальдегид сиропообразное вещество, содержащее углеводы. Основываясь на этом открытии, немецкий химик Адольф Байер в 1870 высказал предположение, что первичным продуктом восстановления диоксида углерода в зеленых растениях является формальдегид, который затем превращается в углеводы. Эта гипотеза привлекла всеобщее внимание – она казалась наиболее правдоподобной. Однако она ничего не говорила о механизме выделения кислорода.


Рис.1. Схема фотосинтеза

Этим вопросом занялся в конце 19 в. биохимик Алексей Николаевич Бах (1857–1946). На основе экспериментальных исследований он пришел к выводу, что при ассимиляции диоксида углерода источником выделяющегося молекулярного кислорода являются пероксиды, образующиеся из воды. Он же высказал предположение о биокаталитической роли белков-ферментов в фотосинтезе.

В 20 в. было установлено, что процесс фотосинтеза начинается на свету в фоторецепторах хлорофиллов, однако многие из последующих стадий могут протекать в темноте. Общий процесс является эндотермическим (DH° ~ 469 кДж/моль СО2). В нем участвует несколько типов хлорофилла, а также другие комплексы магния, железа и меди.

В 1941 американский биохимик Мелвин Калвин (1911–1997) показал, что первичный процесс фотосинтеза заключается в фотолизе молекул воды, в результате чего образуются кислород, выделяющийся в атмосферу, и водород, идущий на восстановление диоксида углерода до органических веществ. Используя радиоактивный изотоп углерода 14С, бумажную хроматографию и классические методы органической химии, Калвин и его группа смогли проследить биосинтетические пути фотохимических процессов. К 1956 стал ясным полный путь превращения углерода при фотосинтезе. За исследования в области ассимиляции диоксида углерода в растениях Калвин был удостоен в 1961 Нобелевской премии по химии.

Полная последовательность всех стадий фотосинтеза пока еще выяснена не до конца, однако интенсивная научная работа в этом направлении продолжается. Исследуется механизм электронного транспорта, продолжается выяснение природы комплекса, катализирующего образование кислорода, изучается структура реакционных центров и светособирающих комплексов.

В целом, химический баланс фотосинтеза может быть представлен в виде простого уравнения:

Водород, необходимый для восстановления диоксида углерода до глюкозы, берется из воды, а выделяющийся в ходе фотосинтеза кислород является побочным продуктом. Процесс нуждается в энергии света, так как вода сама по себе не способна восстанавливать диоксид углерода.

В светозависимой части фотосинтеза (световой реакции) происходит расщепление молекул воды с образованием протонов, электронов и атома кислорода. Электроны, возбужденные энергией света, восстанавливают никотинадениндинуклеотидфосфат (НАДФ). Образующийся НАДФ-Н является подходящим восстановителем для перевода диоксида углерода в органические соединения. Кроме того, в световой реакции образуется аденозинтрифосфат (АТФ), который также необходим для фиксации диоксида углерода.

В световых реакциях электроны переносятся по электрон-транспортной цепи от одной окислительно-восстановительной системы к другой. Возбуждение электронов для восстановления никотинадениндинуклеотидфосфата – сложный фотохимический процесс. Он происходит в реакционных центрах (фотосистемах), которые представляют собой белковые комплексы, содержащие множество молекул хлорофилла и других пигментов. Только около 1% молекул хлорофилла участвуют непосредственно в фотохимическом переносе электронов. Основная часть связана с другими пигментами в так называемом комплексе светособирающей антенны. Энергия кванта света, накопленного в комплексе, передается на реакционный центр, где и используется.

Последующие процессы могут протекать в темноте (темновая реакция). Полная последовательность превращения диоксида углерода в органические соединения называется циклом Калвина.

В зеленых водорослях и высших растениях фотосинтез происходит в хлоропластах, которые окружены двумя мембранами и содержат собственную ДНК. Световые реакции катализируются ферментами, находящиеся в сложенных стопками утолщенных мембранных мешках, а темновые реакции происходят во внутреннем пространстве хлоропластов.

Роль фотосинтеза в биосфере

Наряду с фотосинтезом на Земле совершаются примерно равноценные по масштабам, но противоположные по направлению процессы окисления органических веществ и восстановленного углерода при горении топливных материалов (каменный уголь, нефть, газ, торф, дрова и т.п.), при расходовании органических веществ живыми организмами в процессе их жизнедеятельности (дыхание, брожение), в результате которых образуются полностью окисленные соединения – углекислый газ и вода, и освобождается энергия. Затем с помощью энергии солнечной радиации углекислый газ, вода снова вовлекаются в процессы фотосинтеза, энергия солнечного света, используемая при фотосинтезе, служит движущей силой колоссального по размерам круговорота на Земле таких элементов, как углерод, водород, кислород. В этот круговорот включаются и многие др. элементы: N, S, Р, Mg, Ca и др. За время существования Земли благодаря фотосинтезу важнейшие элементы и вещества прошли уже много тысяч циклов полного круговорота.

В предшествующие эпохи условия для фотосинтеза на Земле были более благоприятны в связи с сильным перевесом восстановительных процессов над окислительными. Постепенно огромные количества восстановленного углерода в органических остатках оказались захороненными в недрах Земли, образовав громадные залежи горючих ископаемых. В результате этого в атмосфере сильно снизилось относительное содержание углекислого газа (до 0,03 объёмных %) и повысилось содержание кислорода, что существенно ухудшило условия для Ф.

Следствием появления на Земле мира фотосинтезирующих растений и непрерывного новообразования ими больших количеств богатых энергией органических веществ явилось развитие мира гетеротрофных организмов (бактерий, грибов, животных, человека) – потребителей этих веществ и энергии. В результате (в процессе дыхания, брожения, гниения, сжигания) органические соединения стали окисляться и подвергаться разложению в таких же количествах, в каких образуют их высшие растения, водоросли, бактерии. На Земле установился круговорот веществ, в котором сумма жизни на нашей планете определяется масштабами фотосинтеза. В текущем геологическом периоде (антропогеновом) размеры фотосинтетической продуктивности на Земле, вероятно, стабилизировались. Однако в связи с бурно возрастающим использованием продуктов фотосинтеза основным её потребителем – человеком – приходится думать о предстоящем истощении горючих ископаемых, пищевых, лесных ресурсов и т.п. Недостаточна фотосинтетическая мощность современной растительности для регенерации атмосферы: растительность Земли не способна полностью усваивать весь углекислый газ (относительное содержание его в атмосфере за последние 100 лет медленно, но неуклонно возрастает), дополнительно поступающий в окружающую среду в результате бурно возрастающих масштабов добычи и сжигания горючих ископаемых.

При этом потенциальная фотосинтетическая активность растений используется далеко не полно. Проблема сохранения, умножения и наилучшего использования фотосинтетической продуктивности растений – одна из важнейших в современном естествознании и практической деятельности человека.

Фотосинтез – это процесс, от которого зависит вся жизнь на Земле. Он происходит только в растениях. В ходе фотосинтеза растение вырабатывает из неорганических веществ необходимые для всего живого органические вещества. Диоксид углерода, содержащийся в воздухе, проникает в лист через особые отверстия в эпидермисе листа, которые называют устьицами; вода и минеральные вещества поступают из почвы в корни и отсюда транспортируются к листьям по проводящей системе растения. Энергию, необходимую для синтеза органических веществ из неорганических, поставляет Солнце; эта энергия поглощается пигментами растений, главным образом хлорофиллом. В клетке синтез органических веществ протекает в хлоропластах, которые содержат хлорофилл. Свободный кислород, также образующийся в процессе фотосинтеза, выделяется в атмосферу.

Таким образом, в основе фотосинтеза лежит превращение электромагнитной энергии света в химическую энергию. Эта энергия, в конце концов, дает возможность превращать диоксид углерода в углеводы и другие органические соединения с выделением кислорода. Фотосинтез, являющийся одним из самых распространенных процессов на Земле, обуславливает природные круговороты углерода, кислорода и других элементов и обеспечивает материальную и энергетическую основу жизни на нашей планете. Фотосинтез является единственным источником атмосферного кислорода.

Процесс фотосинтеза является основой питания всех живых существ, а также снабжает человечество топливом (древесина, уголь, нефть), волокнами (целлюлоза) и бесчисленными полезными химическими соединениями. Из диоксида углерода и воды, связанных из воздуха в ходе фотосинтеза, образуется около 90–95% сухого веса урожая. Остальные 5–10% приходятся на минеральные соли и азот, полученные из почвы. Человек использует около 7% продуктов фотосинтеза в пищу, в качестве корма для животных и в виде топлива и строительных материалов.



biofile.ru

Ответы@Mail.Ru: что такое фотосинтез?

синтез АТФ в клетках растений при использовании энергии солнечного света

Фотоси́нтез — это процесс образования органического вещества из углекислого газа и воды на свету при участии фотосинтетических пигментов

Он происходит у растений через их листья когда на них попадают солнечные лучи. Благодаря этому растение зеленое и может расти.

Это процесс образования хлорофита в зеленых листьях на свету

Фотосинтез, — это процесс образования органического вещества из углекислого газа и воды на свету при участии фотосинтетических пигментов (хлорофилл у растений, бактероихлорофилл и бактериородопсин у бактерий) . В современной физиологии растений под фотосинтезом чаще понимается фотоавтотрофная функция — совокупность процессов поглощения, превращения и использования энергии квантов света в различных эндэргонических реакциях, в том числе превращения углекислого газа в органические вещества. Выделяют три этапа фотосинтеза: фотофизический, фотохимический и химический. На первом этапе происходит поглощение квантов света пигментами, их переход в возбуждённое состояние и передача энергии к другим молекулам фотосистемы. На втором этапе происходит разделение зарядов в реакционном центре, перенос электронов по фотосинтетической электронотранспортной цепи, что заканчивается синтезом АТФ и НАДФН. Первые два этапа вместе называют светозависимой стадией фотосинтеза. Третий этап происходит уже без обязательного участия света и включает в себя биохимические реакции синтеза органических веществ с использованием энергии, накопленной на светозависимой стадии. Чаще всего в качестве таких реакций рассматривается цикл Кальвина и глюконеогенез, образование сахаров и крахмала из углекислого газа воздуха. Фотосинтез растений осуществляется в хлоропластах, обособленных двухмембранных органеллах клетки. Хлоропласты могут быть в клетках плодов, стеблей, однако основным органом фотосинтеза, анатомически приспособленным к его ведению, является лист. В листе наиболее богата хлоропластами ткань палисадной паренхимы. У некоторых суккулентов с вырожденными листьями (например, кактусы) основная фотосинтетическая активность связана со стеблем. Свет для фотосинтеза захватывается более полно благодаря плоской форме листа, обеспечивающей большое отношение поверхности к объёму. Вода доставляется из корня по развитой сети сосудов (жилок листа) . Углекислый газ поступает отчасти посредством диффузии через кутикулу и эпидермис, однако большая его часть диффундирует в лист через устьица и по листу по межклеточному пространству. Растения, осуществляющие С4 и CAM фотосинтез сформировали особые механизмы для активной ассимиляции углекислого газа. В ходе световой стадии фотосинтеза образуется высокоэнергетические продукты: АТФ, служащий в клетке источником энергии, и НАДФН, использующийся как восстановитель. В качестве побочного продукта выделяется кислород. В общем роль световых реакций фотосинтеза заключается в том, что в световую фазу синтезируются молекула АТФ и молекулы-переносчики протонов, т. е. НАДФ Н2. Хлорофилл выполняет две функции: поглощения и передачу энергии. Более 90 % всего хлорофилла хлоропластов входит в состав светособирающих комплексов (ССК) , выполняющих роль антенны, передающей энергию к реакционному центру фотосистем I или II. Помимо хлорофилла в ССК имеются каратиноиды, а у некоторых водорослей и цианобактерий — фикобилины, роль которых заключается в поглощении света тех длин волн, которые хлорофилл поглощает сравнительно слабо. Фотосинтез является основным источником биологической энергии, фотосинтезирующие автотрофы используют её для синтеза органических веществ из неорганических, гетеротрофы существуют за счёт энергии, запасённой автотрофами в виде химических связей, высвобождая её в процессах дыхания и брожения. Энергия получаемая человечеством при сжигании ископаемого топлива (уголь, нефть, природный газ, торф) также является запасённой в процессе фотосинтеза. В результате фотосинтеза растительность земного шара ежегодно усваивает около 200 млрд. т. углекислого газа и выделяет в атмосферы примерно за 10 тыс. лет. К сожалению, варварское сокращение человеком массивов зеленого покрова планеты представляет реальную угрозу уничтожения современной биосферы. <a href=»/» rel=»nofollow» title=»525354:##:wiki/Фоѻ target=»_blank» >[ссылка заблокирована по решению администрации проекта]</a>

ФОТОСИНТЕЗ – образование органических веществ зелеными растениями и некоторыми бактериями с использованием энергии солнечного света. В ходе фотосинтеза происходит поглощение из атмосферы диоксида углерода и выделение кислорода.

Фотоси&#769;нтез — это процесс образования органического вещества из углекислого газа и воды на свету при участии фотосинтетических пигментов (хлорофилл у растений, бактериохлорофилл и бактериородопсин у бактерий).

процесс образования органическихвеществ из неорганических в хлоропластах растения

Образование в клетках зелёных растений и водорослей углеводов из углекислоты и воды под воздействием света, поглощаемого хлорофиллом растений.

Хорошие ответы

Фотоси́нтез — это процесс образования органического вещества из углекислого газа и воды на свету при участии фотосинтетических пигментов (хлорофилл у растений, бактериохлорофилл и бактериородопсин у бактерий)

Фотосинтез — это образование глюкозы и кислорода в хлоропластах из углекислого газа на свету.

Фотоси́нтез — это процесс образования органического вещества из углекислого газа и воды на свету при участии фотосинтетических пигментов (хлорофилл у растений, бактериохлорофилл и бактериородопсин у бактерий).

нихера не понял а для 10-леток можно пояснить?

Фотоси́нтез — это процесс образования органического вещества из углекислого газа и воды на свету при участии фотосинтетических пигментов (хлорофилл у растений, бактериохлорофилл и бактериородопсин у бактерий).

Это такое зелёное

Фотосинтез, — это процесс образования органического вещества из углекислого газа и воды на свету при участии фотосинтетических пигментов (хлорофилл у растений, бактероихлорофилл и бактериородопсин у бактерий) . В современной физиологии растений под фотосинтезом чаще понимается фотоавтотрофная функция — совокупность процессов поглощения, превращения и использования энергии квантов света в различных эндэргонических реакциях, в том числе превращения углекислого газа в органические вещества. Выделяют три этапа фотосинтеза: фотофизический, фотохимический и химический. На первом этапе происходит поглощение квантов света пигментами, их переход в возбуждённое состояние и передача энергии к другим молекулам фотосистемы. На втором этапе происходит разделение зарядов в реакционном центре, перенос электронов по фотосинтетической электронотранспортной цепи, что заканчивается синтезом АТФ и НАДФН. Первые два этапа вместе называют светозависимой стадией фотосинтеза. Третий этап происходит уже без обязательного участия света и включает в себя биохимические реакции синтеза органических веществ с использованием энергии, накопленной на светозависимой стадии. Чаще всего в качестве таких реакций рассматривается цикл Кальвина и глюконеогенез, образование сахаров и крахмала из углекислого газа воздуха. Фотосинтез растений осуществляется в хлоропластах, обособленных двухмембранных органеллах клетки. Хлоропласты могут быть в клетках плодов, стеблей, однако основным органом фотосинтеза, анатомически приспособленным к его ведению, является лист. В листе наиболее богата хлоропластами ткань палисадной паренхимы. У некоторых суккулентов с вырожденными листьями (например, кактусы) основная фотосинтетическая активность связана со стеблем. Свет для фотосинтеза захватывается более полно благодаря плоской форме листа, обеспечивающей большое отношение поверхности к объёму. Вода доставляется из корня по развитой сети сосудов (жилок листа) . Углекислый газ поступает отчасти посредством диффузии через кутикулу и эпидермис, однако большая его часть диффундирует в лист через устьица и по листу по межклеточному пространству. Растения, осуществляющие С4 и CAM фотосинтез сформировали особые механизмы для активной ассимиляции углекислого газа.

Фотоси́нтез (от др. -греч. φῶς — свет и σύνθεσις — соединение, складывание, связывание, синтез) — процесс преобразования энергии света в энергию химических связей органических веществ на свету фотоавтотрофами при участии фотосинтетических пигментов (хлорофилл у растений, бактериохлорофилл и бактериородопсин у бактерий). В современной физиологии растений под фотосинтезом чаще понимается фотоавтотрофная функция — совокупность процессов поглощения, превращения и использования энергии квантов света в различных эндэргонических реакциях, в том числе превращения углекислого газа в органические вещества.

touch.otvet.mail.ru

Процесс фотосинтеза и его значение

Фотосинтез — это процесс преобразования углекислого газа в кислород под воздействием солнечной энергии. Хотя в более широком смысле этого слова подразумевается множество процессов, в результате которых происходит поглощение и преобразование квантов света. И обладают этой способностью не только растения, но и многие микроорганизмы. Так, большую часть кислорода вырабатывают фитопланктоны, обитающие в Мировом океане. Но и роль растений преуменьшать не стоит.

Этапы фотосинтеза

На самом деле, фотосинтез — очень сложный процесс. На первом его этапе идёт поглощение солнечной энергии и её передача другим молекулам, причастным к процессу. На втором этапе — разделение квантов света на заряды, в результате чего становится возможной передача электронов по фотосинтетической цепи. Благодаря этому происходит создание АТФ и НАДФН. Оба этапа имеют общее название — светозависимая стадия фотосинтеза.

Энергия, что накапливается в результате поглощения квантов света, используется в дальнейшем для образования кислорода. Но наличие самого света для этого уже не требуется. На третьем этапе происходят различные биохимические реакции, в результате которых из углекислого газа могут вырабатываться глюкоза, сахар, крахмал и т.д.

Значение фотосинтеза

Именно благодаря данному процессу Солнце является главным источником энергии на нашей планете. Многие организмы и вовсе живут лишь за счёт солнечной энергии. И они же, буквально, выдыхают её в окружающее пространство. Это позволяет другим живым организмам пользоваться ей. К примеру, всем нам известно, что мощнейшими источниками энергии для человечества являются нефть, природный газ, торф и уголь. Но мало кто знает, что вся энергия, что выделяется при сжигании этих полезных ископаемых, была запасена в результате фотосинтеза.

Но важнейшим свойством фотосинтеза, разумеется, является поглощение углекислого газа и выработка кислорода. Ведь именно благодаря этому и существует всё живое на нашей планете. Так что недооценивать важность этого процесса никак нельзя.

naturae.ru

Фотосинтез


Значение термина Фотосинтез в Энциклопедии Научной Библиотеки

Фотосинтез — Образование высшими растениями сложных органических веществ из простых соединений — углекислого газа и воды — за счет световой энергии, поглощаемой хлорофиллом. Создаваемые в процессе фотосинтеза органические вещества необходимы растениям для построения их органов и поддержания жизнедеятельности.

Исходные вещества для фотосинтеза — углекислый газ, поступающий в листья из воздуха, и вода — представляют собой продукты полного окисления углерода (CO2) и водорода (H2O). В образуемых при фотосинтезе органических веществах углерод находится в восстановленном состоянии. При фотосинтезе система СO2 — Н2O, состоящая из окисленных веществ и находящаяся на низком энергетическом уровне, восстанавливается в менее устойчивую систему СН2O — O2, находящуюся на более высоком энергетическом уровне.

Из уравнения видно, что на получение одной грамм — молекулы глюкозы (С6НО6) расходуется световая энергия в количестве 2872,14 кДж, которая запасается в виде химической энергии. При этом в атмосферу выделяется свободный кислород.

Приведенное уравнение дает конкретное представление о начальных и конечных веществах, участвующих в фотосинтезе, но оно не вскрывает сущности очень сложного биохимического процесса.

История учения об углеродном питании растений насчитывает более 200 лет. В трактате «Слово о явлениях воздушных» М. В. Ломоносов в 1753 г. писал, что растение строит свое тело из окружающего его воздуха, поглощенного при помощи листьев. Однако открытие фотосинтеза связывают с именем английского химика Дж. Пристли, который в 1771 г. обнаружил, что на свету зеленые растения «исправляют» воздух, «испорченный» горением.

Последующими работами голландского ученого Я. Ингенхауза (1779, 1798 гг.), швейцарских Ж. Сенебье (1782, 1783 гг.) и

Н. Соссюра (1804 г.) было установлено, что на свету зеленые растения усваивают из окружающей атмосферы углекислый газ и выделяют кислород.

Важную роль в изучении фотосинтеза имели работы К. А. Тимирязева, который показал, что свет является источником энергии для синтеза органических веществ из углекислого газа и воды, и установил максимум поглощения хлорофилла в красной и сине — фиолетовой областях спектра. Дальнейшие исследования многих ученых с использованием современных методов позволили вскрыть многие звенья сложной цепи превращений веществ в растительном организме.

Было установлено, что фотосинтез протекает в двух фазах. Первая из них — световая, вторая — темновая. Первая фаза идет только на свету, тогда как вторая — с равным успехом как в темноте, так и на свету. Световая фаза протекает в зеленой фракции хлоропласта — гранах, а все превращения темновой фазы проходят в его бесцветной фракции — цитоплазматическом матриксе. Световая фаза характерна только для фотосинтезирующих клеток, тогда как большинство реакций, составляющих процесс фиксации углекислоты в темновой фазе, свойствен не только фотосинтезирующим клеткам.

Световая фаза фотосинтеза начинается с поглощения света пигментами. В химических реакциях световой фазы участвуют лишь молекулы хлорофилла а, находящиеся в активированном (за счет поглощения световой энергии) состоянии. Остальные пигменты — хлорофилл b и каротиноиды — улавливают свет с помощью особых систем, передают полученную энергию на молекулы хлорофилла а.

Важнейшая роль световой фазы состоит в построении молекулы АТФ (аденозинтрифосфата), в которой запасается энергия. Процесс образования АТФ в хлоропластах с затратой солнечной энергии называется циклическим фосфорилированием. При распаде АТФ до АДФ (аденозиндифосфата) выделяется около 40 кДж энергии.

Для восстановления молекулы НАДФ (никотинамидадениндинуклеотидфосфат) требуется два атома водорода, который получается из воды с помощью света. Активированный светом хлорофилл тратит свою энергию на разложение воды, превращается в инактивированную форму, при этом выделяются четыре атома водорода, которые используются в восстановительных реакциях, и два атома кислорода, поступающие в атмосферу.

Таким образом, первыми стабильными химическими продуктами световой реакции в растениях являются НАДФ — Н2 и АТФ.

В темновую фазу аминокислоты и белки образуются в цитоплазме.

Темновая фаза фотосинтеза служит продолжением световой фазы. В темновой фазе с участием АТФ и НАДФ — Н2 из углекислого газа строятся различные органические вещества. При этом НАДФ — Н2 выполняет в темновой фазе роль восстановителя, а АТФ служит источником энергии. Восстановитель окисляется до НАДФ, а от АТФ отщепляется один остаток фосфорной кислоты (Н3РO4) и получается АДФ. НАДФ и АДФ снова возвращаются из матрикса в граны, где в световой фазе снова преобразуются в НАДФ — Н2 и АТФ и все начинается сначала.

Последовательность реакций на пути превращения СO2 в сахар удалось выяснить благодаря применению радиоактивного углерода 14С. Было установлено, что в процессе фотосинтеза за несколько минут образуется большое число соединений. Однако когда время, отведенное на фотосинтез, сократили до 0,5 с, удалось обнаружить лишь трехуглеродное фосфорилированное соединение — трифосфоглицериновую кислоту (ФГК). Следовательно, ФГК — это первый стабильный продукт, образующийся из СO2 в процессе фотосинтеза. Оказалось, что первым веществом, которое соединяется с СO2 (акцептор СO2), является пятиуглеродное фосфорилированное соединение — рибулезодифосфат (РДФ), распадающееся после присоединения СO2 на две молекулы ФГК. Фермент, катализирующий эту реакцию, — РДФ — карбоксилаза — занимает в количественном отношении первое место среди белков, содержащихся в белковой ткани.

Фосфоглицериновая кислота восстанавливается до уровня альдегида за счет восстановительного потенциала НАДФ — Н2 и энергии АТФ.

Фосфоглицериновый альдегид, представляющий собой фосфорилированное соединение сахара, содержит только три атома углерода, тогда как простейшие сахара содержат шесть атомов углерода. Для того чтобы образовалась гексоза (простейший сахар), две молекулы фосфоглицеринового альдегида должны соединиться и полученный продукт — гексозодифосфат — должен подвергнуться дефосфорилированию.

Получившаяся гексоза может направляться либо на синтез сахарозы и полисахаридов, либо на построение любых других органических соединений клетки. Таким образом, сахар, образующийся в процессе фотосинтеза из СO2, — это основное органическое вещество, которое в клетках высших растений служит источником как энергии, так и необходимых клетке строительных белков.

факторы, влияющие на фотосинтез

Углекислый газ. Интенсивность фотосинтеза зависит от количества углекислого газа в воздухе. Обычно в атмосферном воздухе содержится 0,03 % СO2. Увеличение его содержания способствует повышению урожайности, что используют при выращивании растений в парниках, оранжереях, теплицах. Установлено, что наилучшие условия для фотосинтеза создаются при содержании СO2 около 1,0%. Повышение содержания СO2 до 5,0% способствует повышению интенсивности фотосинтеза, но в этом случае необходимо повысить освещенность.

Количество СO2, усвоенное в единицу времени на единицу массы хлорофилла, называется ассимиляционным числом. Количество миллиграммов СO2, усвоенное за 1 ч на 1 дм2 листовой поверхности, называется интенсивностью фотосинтеза. Интенсивность фотосинтеза у различных видов растений неодинакова, изменяется она и с возрастом растений.

Свет. Растения поглощают 85 — 90 % попадающей на них световой энергии, но на фотосинтез идет только 1 — 5% от поглощенной световой энергии. Остальная энергия используется на нагрев растения и транспирацию.

Все растения по их отношению к интенсивности освещения можно разделить на две группы — светолюбивые и тенелюбивые. Светолюбивые требуют большей освещенности, теневыносливые — меньшей.

Вода. Обеспеченность растений водой имеет важное значение. Недостаточное насыщение клеток водой вызывает закрытие устьиц, а следовательно, снижает снабжение растений углекислым газом. Обезвоживание клеток нарушает деятельность ферментов.

Температурный режим. Наилучший температурный режим для большинства растений, при котором фотосинтез идет наиболее интенсивно, 20 — 30 °С. При понижении или повышении температуры фотосинтез замедляется. Хлорофилл в клетках растений образуется при температуре от 2 до 40 °С.

При благоприятном сочетании всех необходимых для фотосинтеза факторов растения наиболее активно накапливают органические вещества и выделяют кислород. Образующиеся в избытке продукты фотосинтеза — сахара — немедленно превращаются в высокополимерное запасное соединение — крахмал, откладывающийся в виде крахмальных зерен в хлоропластах и лейкопластах. Одновременно какая — то часть Сахаров выводится из пластид и перемещается в другие части растения. Крахмал может вновь расщепляться до Сахаров, которые, окисляясь в процессе дыхания, обеспечивают клетку энергией.

Таким образом, искусственно регулируя газовый состав атмосферы, обеспечивая растения светом, водой, теплом, можно повышать интенсивность фотосинтеза и, следовательно, увеличивать продуктивность растений. Именно на это направлены агротехнические приемы при возделывании сельскохозяйственных культур: обогащение почвы органическими веществами, обработка почвы, орошение, мульчирование, регулирование густоты посевов и др.
читайте так-же


Статья «Фотосинтез» была прочитана 40214 раз

enc.sci-lib.com

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *