Форма звезда – шаблон звезды для вырезания из бумаги

шаблон звезды для вырезания из бумаги

Детям нравится рисовать звездочки. И вырезать их — ведь это так просто вырезать пятиконечную звезду. Цветные же звездочки можно распечатать и использовать, как наклейки. Скачивайте бесплатно и печатайте материалы и шаблоны на сайте kids-pic.com

Распечатать Скачать


Распечатать Скачать

Распечатать Скачать

Распечатать Скачать

Распечатать Скачать

Распечатать Скачать

Спасибо, что выбираете наш сайт для поиска и реализации идей творчества с детьми.

Скачивайте бесплатно и печатайте материалы и шаблоны на сайте kids-pic.com .

Поделитесь в социальных сетях этой статьей.

Приятного творчества!!!

kids-pic.com

Звёзды и их классификация

Звезда — это некий газовый шарообразный космический объект, излучающий свет, и в недрах которого ранее происходили реакции термоядерного синтеза (или происходят сейчас).Автор фото — Jon Pumpkin, ссылка на оригинал (фото было изменено).

Звёзды — большие космические объекты. Настолько большие, что вокруг них образуются целые системы.
Различные космические объекты (планеты, астероиды, кометы и другие), вращающиеся вокруг центральной звезды — и есть такие системы. Например, мы находимся Солнечной системе. И подобных ей во Вселенной миллиарды миллиардов.

Виды звёзд

Звёзды различают по таким параметрам, как масса, размер и светимость. Цвет их изменяется от красного до голубого. И чем ближе к голубому — тем выше температура космического объекта.

Красный (класс M) — 2000-3500 градусов.
Оранжевый (класс K) — от 3500 до 5000 градусов.
Жёлтый (класс G) — 5-6 тысяч градусов. К данному типу относится и наше Солнце.
Жёлто-белый (класс F) — от 6000 К до 7500 К.
Белый (класс A) — 7500 К — 10000 К.
Бело-голубой (класс B) — 10-30 тысяч градусов.

Голубой (класс O) — 30-60 тысяч К.

Коричневый карлик. Это тип звёзд, которые на излучение тратят больше энергии, чем получают в результате ядерной реакции. Их температура около 300-500 градусов.

Белый карлик. Практически все звёзды завершают свою эволюцию превращением в белых карликов.
В конце своей жизни они начинают сжиматься, уменьшаясь в сотни раз от своего первоначального размера. При этом они обретают плотность, превосходящую плотность воды в миллион раз. Однако, теряют источники энергии и постепенно остывают. Такую участь ждёт и наше Солнце (но сейчас его относят к типу жёлтых карликов).

Красный гигант. Тип звёзд, имеющих относительно низкую температуру (3-5 тысяч градусов), но при этом обладающие огромной светимостью.

Типа Вольфа — Райе. Класс звёзд, обладающих очень высокой температурой и светимостью.

Сверхновые. Это те звёзды, которые закачивают свой цикл взрывным процессом. Если в спектре такой вспышки присутствуют линии водорода — это Сверхновая 2 типа, если нет — 1 типа.

Новые. Это Сверхновые, вспышка которых гораздо слабее — не такая яркая, и выделяет не так много энергии.

Гиперновые. Это очень большие Сверхновые.
Или, другими словами, Гиперновые — это очень большие и тяжёлые звёзды (более 100 масс Солнца), оканчивающие свою эволюцию взрывом.

Яркие голубые переменные (ЯГП). Очень яркие гигантские звёзды, ещё и пульсирующие при этом. Их сияние может быть, представьте только, в миллион раз сильнее солнечного.
Полагают, это объясняется тем, что звёзды такого типа сбрасывают излишки энергии — отсюда и такое яркое сияние.

Ультраяркие рентгеновские источники. Это тип звёзд, имеющих очень сильное излучение, но только в рентгеновском диапазоне.

Нейтронные звёзды. Это тип звёзд, сжатие Ядра которых не прекращается до тех пор, пока практически все частицы не превратятся в нейтроны.
Масса таких звёзд превосходит массу Солнца в полтора — три раза, но их диаметр при этом около 10 км. Это насколько же высокой плотностью они обладают?!

Звёздные системы

Звёздные системы могут состоять из одной звезды, двух или более.
Самый распространённый тип звёздных систем — двойной (две звезды, связанные гравитационно друг с другом и обращающиеся вокруг одного центра масс) — около 70% всех звёзд являются двойными.

Бывают случаи, когда более десятка звёзды образуют систему. В таком случае они называются звёздным скоплением.

Огромные скопления звёзд, вращающиеся вокруг одного центра масс — это Галактики.

naturae.ru

Виды звезд в наблюдаемой Вселенной

Звезды бывают самые разные: маленькие и большие, яркие и не очень, старые и молодые, горячие и «холодные», белые, голубые, желтые, красные и т. д.

Разобраться в классификации звезд позволяет диаграмма Герцшпрунга – Рассела.

Она показывает зависимость между абсолютной звездной величиной, светимостью, спектральным классом и температурой поверхности звезды. Звезды на этой диаграмме располагаются не случайно, а образуют хорошо различимые участки.

Диаграмма Герцшпрунга – Рассела

Большая часть звезд находится на так называемой главной последовательности. Существование главной последовательности связано с тем, что стадия горения водорода составляет ~90% времени эволюции большинства звезд: выгорание водорода в центральных областях звезды приводит к образованию изотермического гелиевого ядра, переходу к стадии красного гиганта и уходу звезды с главной последовательности. Относительно краткая эволюция красных гигантов приводит, в зависимости от их массы, к образованию белых карликов, нейтронных звезд или черных дыр.

Находясь на различных стадиях своего эволюционного развития, звезды подразделяются на нормальные звезды, звезды карлики, звезды гиганты.

Нормальные звезды, это и есть звезды главной последовательности. К ним относится и наше Солнце. Иногда такие нормальные звезды, как Солнце, называют желтыми карликами.

Жёлтый карлик

Жёлтый карлик – тип небольших звёзд главной последовательности, имеющих массу от 0,8 до 1,2 массы Солнца и температуру поверхности 5000–6000 K.

Время жизни жёлтого карлика составляет в среднем 10 миллиардов лет.

После того, как сгорает весь запас водорода, звезда во много раз увеличивается в размере и превращается в красный гигант. Примером такого типа звёзд может служить Альдебаран.

Красный гигант выбрасывает внешние слои газа, образуя тем самым планетарные туманности, а ядро коллапсирует в маленький, плотный белый карлик.

Красный гигант

Красный гигант – это крупная звезда красноватого или оранжевого цвета. Образование таких звезд возможно как на стадии звездообразования, так и на поздних стадиях их существования.

На ранней стадии звезда излучает за счет гравитационной энергии, выделяющейся при сжатии, до того момента пока сжатие не будет остановлено начавшейся термоядерной реакцией.

На поздних стадиях эволюции звезд, после выгорания водорода в их недрах, звезды сходят с главной последовательности и перемещаются в область красных гигантов и сверхгигантов диаграммы Герцшпрунга – Рассела: этот этап длится примерно 10% от времени «активной» жизни звезд, то есть этапов их эволюции, в ходе которых в звездных недрах идут реакции нуклеосинтеза.

Звезда гигант имеет сравнительно низкую температуру поверхности, около 5000 градусов. Огромный радиус, достигающий 800 солнечных и за счет таких больших размеров огромную светимость. Максимум излучения приходится на красную и инфракрасную область спектра, потому их и называют красными гигантами.

Крупнейшие из гигантов превращаются в красных супергигантов. Звезда под названием Бетельгейзе из созвездия Орион – самый яркий пример красного супергиганта.

Звезды карлики являются противоположностью гигантов и могут быть следующие.

Белый карлик

Белый карлик – это то, что остаётся от обычной звезды с массой, не превышающей 1,4 солнечной массы, после того, как она проходит стадию красного гиганта.

Из-за отсутствия водорода термоядерная реакция в ядре таких звезд не происходит.

Белые карлики – очень плотные. По размеру они не больше Земли, но массу их можно сравнить с массой Солнца.

Это невероятно горячие звёзды, их температура достигает 100 000 градусов и более. Они сияют за счёт своей оставшейся энергии, но со временем она заканчивается, и ядро остывает, превращаясь в чёрного карлика.

Красный карлик

Красные карлики – самые распространённые объекты звёздного типа во Вселенной. Оценка их численности варьируется в диапазоне от 70 до 90% от числа всех звёзд в галактике. Они довольно сильно отличаются от других звезд.

Масса красных карликов не превышает трети солнечной массы (нижний предел массы — 0,08 солнечной, далее идут коричневые карлики), температура поверхности достигает 3500 К. Красные карлики имеют спектральный класс M или поздний K. Звезды этого типа испускают очень мало света, иногда в 10 000 раз меньше Солнца.

Учитывая их низкое излучение, ни один из красных карликов не виден с Земли невооружённым глазом. Даже ближайший к Солнцу красный карлик Проксима Центавра (самая близкая к Солнцу звезда в тройной системе) и ближайший одиночный красный карлик, звезда Барнарда, имеют видимую звёздную величину 11,09 и 9,53 соответственно. При этом невооружённым взглядом можно наблюдать звезду со звёздной величиной до 7,72.

Из-за низкой скорости сгорания водорода красные карлики имеют очень большую продолжительность жизни – от десятков миллиардов до десятков триллионов лет (красный карлик с массой в 0,1 массы Солнца будет гореть 10 триллионов лет).

В красных карликах невозможны термоядерные реакции с участием гелия, поэтому они не могут превратиться в красные гиганты. Со временем они постепенно сжимаются и всё больше нагреваются, пока не израсходуют весь запас водородного топлива.

Постепенно, согласно теоретическим представлениям, они превращаются в голубые карлики – гипотетический класс звёзд, пока ни один из красных карликов ещё не успел превратиться в голубого карлика, а затем – в белые карлики с гелиевым ядром.

Коричневый карлик

Коричневый карлик – субзвездные объекты (с массами в диапазоне примерно от 0,01 до 0,08 массы Солнца, или, соответственно, от 12,57 до 80,35 массы Юпитера и диаметром примерно равным диаметру Юпитера), в недрах которых, в отличие от звезд главной последовательности, не происходит реакции термоядерного синтеза c превращением водорода в гелий.

Минимальная температура звёзд главной последовательности составляет порядка 4000 К, температура коричневых карликов лежит в промежутке от 300 до 3000 К. Коричневые карлики на протяжении своей жизни постоянно остывают, при этом чем крупнее карлик, тем медленнее он остывает.

Субкоричневые карлики

Субкоричневые карлики или коричневые субкарлики – холодные формирования, по массе лежащие ниже предела коричневых карликов. Масса их меньше примерно одной сотой массы Солнца или, соответственно, 12,57 массы Юпитера, нижний предел не определён. Их в большей мере принято считать планетами, хотя к окончательному заключению о том, что считать планетой, а что – субкоричневым карликом научное сообщество пока не пришло.

Черный карлик

Черные карлики – остывшие и вследствие этого не излучающие в видимом диапазоне белые карлики. Представляет собой конечную стадию эволюции белых карликов. Массы черных карликов, подобно массам белых карликов, ограничиваются сверху 1,4 массами Солнца.

Двойная звезда

Двойная звезда – это две гравитационно связанные звезды, обращающиеся вокруг общего центра масс.

Иногда встречаются системы из трех и более звезд, в таком общем случае система называется кратной звездой.

В тех случаях, когда такая звездная система не слишком далеко удалена от Земли, в телескоп удается различить отдельные звезды. Если же расстояние значительное, то понять, что перед астрономами двойная звезда удается только по косвенным признакам – колебаниям блеска, вызываемым периодическими затмениями одной звезды другою и некоторым другим.

Новая звезда

Звезды, светимость которых внезапно увеличивается в 10 000 раз. Новая звезда представляет собой двойную систему, состоящую из белого карлика и звезды-компаньона, находящейся на главной последовательности. В таких системах газ со звезды постепенно перетекает на белый карлик и периодически там взрывается, вызывая вспышку светимости.

Сверхновая звезда

Сверхновая звезда – это звезда, заканчивающая свою эволюцию в катастрофическом взрывном процессе. Вспышка при этом может быть на несколько порядков больше чем в случае новой звезды. Столь мощный взрыв есть следствие процессов, протекающих в звезде на последний стадии эволюции.

Нейтронная звезда

Нейтронные звезды (НЗ) – это звездные образования с массами порядка 1,5 солнечных и размерами, заметно меньшими белых карликов, типичный радиус нейтронной звезды составляет, предположительно, порядка 10—20 километров.

Они состоят в основном из нейтральных субатомных частиц – нейтронов, плотно сжатых гравитационными силами. Плотность таких звезд чрезвычайно высока, она соизмерима, а по некоторым оценкам, может в несколько раз превышать среднюю плотность атомного ядра. Один кубический сантиметр вещества НЗ будет весить сотни миллионов тонн. Сила тяжести на поверхности нейтронной звезды примерно в 100 млрд раз выше, чем на Земле.

В нашей Галактике, по оценкам ученых, могут существовать от 100 млн до 1 млрд нейтронных звёзд, то есть где-то по одной на тысячу обычных звёзд.

Пульсары

Пульсары – космические источники электромагнитных излучений, приходящих на Землю в виде периодических всплесков (импульсов).

Согласно доминирующей астрофизической модели, пульсары представляют собой вращающиеся нейтронные звёзды с магнитным полем, которое наклонено к оси вращения. Когда Земля попадает в конус, образуемый этим излучением, то можно зафиксировать импульс излучения, повторяющийся через промежутки времени, равные периоду обращения звезды. Некоторые нейтронные звёзды совершают до 600 оборотов в секунду.

Цефеиды

Цефеиды – класс пульсирующих переменных звёзд с довольно точной зависимостью период-светимость, названный в честь звезды Дельта Цефея. Одной из наиболее известных цефеид является Полярная звезда.

Приведенный перечень основных видов (типов) звезд с их краткой характеристикой, разумеется, не исчерпывает всего возможного многообразия звезд во Вселенной.

Источники – Википедия
Типы звезд Вселенной
Виды звезд

ЕЩЁ МАТЕРИАЛЫ ПО ТЕМЕ:

1. Блеск и светимость звезд

2. Светимость

3. Спектральная классификация звезд

myvera.ru

Виды звёзд [Типы] — какие бывают, сколько, классификация, примеры, разновидности, вики — WikiWhat

Полностью конвек­тивные звёзды

Во всей звезде перенос энергии осуществляет­ся конвекцией. Источник энергии — гравитационное сжатие — соответствует только что возникшей звезде. На диаграмме Герцшпрунга — Рассела звезда, построенная по этой модели, находится в облас­ти красных гигантов и между этой областью и главной после­довательностью. Конвекция обеспечивает эффективное переме­шивание вещества, поэтому химический состав звезды одно­роден. Модель описывает звезду на ранней стадии эволюции.

Звёзды главной последовательно­сти

Звёзды нижней части главной последовательно­сти

Звёзды нижней части главной последовательно­сти — это те, у которых M < 1,4M. Источником энергии служит горение водо­рода в протон-протонном цикле. Температура в центре 12—14 млн кельвин. Передача энергии в центральных областях осуществляется излучением (лучистая зона). Примерно на рас­стоянии, равном половине радиуса, прозрачность вещества уменьшается настолько, что лучистый перенос «не справляет­ся», и возникает конвекция (конвективная оболочка). По ме­ре сгорания водорода гелий накапливается в центральных час­тях, так как там температура выше и термоядерные реакции происходят быстрее, но принципиальных изменений модели нет. На диаграмме Герцшпрунга — Рассела звезда, построенная по этой модели, находится вблизи и на главной последовательности в нижней её части. Представитель этого типа звёзд — Солнце.

Звёзды верхней части главной последовательно­сти

Масса звёзд верхней части главной последовательно­сти больше 1,4M. Температура в центре звезды составляет 17—20 млн кельвин, горение водорода осуществляется в углерод­но-азотном цикле. Темп выделения энергии очень высок, и в центре образуется конвективное ядро, которое окружено лу­чистой оболочкой.

Высокий темп выгорания водорода приводит к тому, что в центральной части звезды накапливается гелий, и химиче­ский состав звезды перестаёт быть однородным.

Звёзды с неоднородным химическим составом — это мо­дели массивных звёзд главной последовательности и красных гигантов, т. е. звёзд, находящихся на поздних стадиях эволюции. Характерной их особенностью является наличие слоевых источников энергии, когда в центре звезды полностью исчер­пывается водород, образуется гелиевое ядро, на поверхности которого продолжается горение водорода.

Более сложные модели (это модели звёзд большой массы на поздних стадиях эволюции) могут иметь несколько слое­вых источников энергии, каждый из которых отделяет зоны с различным химическим составом. Так, переходя все к более глубоким слоям звезды, мы пересечём первый слоевой источ­ник, отделяющий богатую водородом внешнюю оболочку звез­ды от слоя чистого гелия. На нижней границе этого слоя го­рит гелий (реакции 3He => C и C + He => 0), слоевой источник отделяет от гелиевого слоя слой смеси углерода и кислорода, в нижней части которого происходит реакция C + O => Mg, и т. д. В такой модели может чередоваться и несколько кон­вективных и лучистых зон.

Белые карлики

Белый карлик обладает очень высокой плотностью вещества (ρ ≈ 109 — 1011 кг/м3). При таких плотностях газ уже не является идеальным. В полностью ионизованном веществе белого карлика как бы сосуществуют два газа: ионный, обладающий свойствами идеального газа, и электронный, обладающий свойствами вырожденного газа. Дав­ление в белом карлике обеспечивается электронным газом, и оно зависит исключительно от плотности вещества.

Звезда находится в равновесии, если гравитационное дав­ление равно давлению газа. Гравитационное давление pg ~ GM2 / R4, давление вырожденного газа p ~ ρ5/3, тогда при равновесии GM2 / R4 ~ ρ3/2 = (GM / R3)5/3 ~ M5/3 / R5. Отсюда следует, что равновесие возмож­но, если R ~ M-1/3, т. е. при уве­личении массы радиус белого карлика уменьшается. Материал с сайта http://wikiwhat.ru

Но свойства вырожденного газа при некоторой критической плот­ности меняются так, что при боль­ших плотностях меняется урав­нение состояния, т. е. изменяется зависимость давления от плотнос­ти. Теперь она будет такой: p ~ ρ4/3. Но при этом равенство гравитаци­онного и газового давлений возмож­но только при определённом зна­чении массы. Предельная масса белого карлика оказывается равной примерно 1,4M. Зависимость радиуса от массы показана на рисунке 72.

В белом карлике плотность значительно увеличивается к центру, температура же благодаря высокой теплопроводности вырожденного газа повышается очень медленно. При дости­жении плотности более 1012 кг/м3 в центре белого карлика мо­жет образоваться кристаллическое (твёрдое) ядро.

Переменные звёзды

см. Переменная звезда

см. Новая звезда

Сверхновые звёзды

см. Сверхновая звезда

Нейтронные звёзды

см. Нейтронная звезда

Картинки (фото, рисунки)

  • Рис. 72. Диаграмма масса—радиус для белых карликов
На этой странице материал по темам:
  • Сколько видов звёзд бывает

  • Звезды виды

  • Планета виды

  • Типы, виды звезд кратко

  • Виды звездочек

Вопросы к этой статье:
  • Опишите основные виды звёзд.

wikiwhat.ru

Звезды

На протяжении веков каждую ночь мы видим в небе загадочные огоньки – звезды нашей Вселенной. В древности люди видели фигуры животных в скоплениях звезд, и позже они начали называться созвездиями. На текущий момент ученые выделяют 88 созвездий, которые разделяют ночное небо на участки. Звезды – это источники энергии и света для Солнечной системы. Они способны создавать тяжелые элементы, которые необходимы для начала жизни. Таким образом, Солнце дарит свое тепло всему живому на планете. Степень яркости звезд определяется их размерами.

Звезда Canis Majoris из созвездия Большого Пса является самой крупной во Вселенной. Она находится в 5 тыс. световых лет от Солнечной системы. Ее диаметр – 2,9 миллиарда километров.

Конечно же, не все звезды в Космосе такие огромные. Есть и звезды-карлики. Величину звезд ученые оценивают по шкале – чем звезда ярче, тем ее номер меньше. Самая яркая звезда в ночном небе Сириус. По цветам звезды делятся на классы, которые указывают на их температуру. К классу О относятся самые горячие, они голубого цвета. Звезды красного цвета являются самыми холодными. 

Следует заметить, что звезды не мерцают. Этот эффект похож на то, что мы наблюдаем в жаркие дни лета, посмотрев на раскаленный бетон или асфальт. Кажется, что мы смотрим через дрожащее стекло. Этот же процесс вызывает иллюзию мерцания звезды. Чем ближе она к нашей планете, тем больше она «мерцает».

Виды звезд

Главная последовательность – время существования звезды, которое зависит от ее размера. Маленькие звезды сияют дольше, крупные, наоборот, меньше. Массивным звездам топлива хватит на пару сотен тысяч лет, а малые будут гореть на протяжении миллиардов лет.

Красный гигант – большая звезда оранжевого или красноватого оттенка. Звезды этого типа очень крупных размеров, которые превышают обычные в сотни раз. Самые массивные из них становятся сверхгигантами. Бетельгейзе, из созвездия Орион, является самой яркой среди красных супергигантов.

Белый карлик – это остатки обычной звезды, после красного гиганта. Эти звезды довольно плотные. Их размер не больше нашей планеты, но их массу можно сравнить с Солнцем. Температура белых карликов достигает 100 тыс. градусов и больше.

Коричневые карлики еще называют субзвездами. Это газовые массивные шары, которые больше Юпитера и меньше Солнца. Эти звезды не излучают тепла и света. Они являют собой темный сгусток материи.

Цефеида. Цикл ее пульсации колеблется между несколькими секундами и несколькими годами. Все зависит от разновидности переменной звезды. Цефеиды изменяют свою светимость в конце жизни и в начале. Они могут быть внешними и внутренними.

Большинство звезд – это часть звездных систем. Двойные звезды – две гравитационно связанные звезды. Ученые доказали, что у половины звезд галактики есть пара. Они могут затмевать друг друга, потому что их орбиты находятся под малым углом к лучу зрения.

Новые звезды. Это тип катаклизмических переменных звезд. Их блеск меняется не так резко, по сравнению со сверхновыми. В нашей галактике выделяют две группы новых звезд: новые балджа (медленные и слабее) и новые диска (быстрее и ярче).

Сверхновые. Звезды, которые заканчивают эволюцию во взрывном процессе. Этим термином были названы звезды, которые вспыхнули сильнее новых. Но ни одни, ни другие не являются новыми. Всегда вспыхивают звезды, которые уже существуют.

Гиперновые. Это очень крупная сверхновая звезда. Теоретически они могли бы создать Земле серьезную угрозу сильной вспышкой, но на данный момент подобных звезд поблизости нашей планеты нет.

Цикл жизни звезд

Звезда берет свое начало в виде облака газа и пыли, которое называют туманностью. Взрывная волна сверхновой или гравитация соседней звезды способна заставить ее сжиматься. Элементы облака собираются в плотную область, которая называется протозвездой. При следующем сжатии она нагревается и достигает критической массы. После происходит ядерный процесс, и звезда проходит все фазы существования. Первый является самым стабильным и долгим. Но со временем топливо заканчивается, и мелкая звезда становится красным гигантом, а большая – красным супергигантом. Эта фаза будет длиться, пока топливо полностью не закончится. Туманность, которая останется после звезды, может расширяться на протяжении миллионов лет. После чего на нее подействует взрывная волна или гравитация, и все повторится сначала.

Основные процессы и характеристики

Звезда имеет два параметра, которые определяют все внутренние процессы, – химический состав и масса. Задав их одиночной звезде, можно предсказать спектр, блеск и внутреннюю структуру звезды.

Расстояние

Есть много способов для определения расстояний до звезды. Самый точный – измерение параллаксов. До звезды Веги расстояние измерил астроном Василий Струве в 1873. Если звезда находится в звездном скоплении, расстояние до звезды можно принять равным расстоянию до скопления. Если звезда из класса цефеид, расстояние можно вычислить из зависимости абсолютная звездная величина – период пульсации. Чтобы определить расстояние к далеким звездам, астрономы используют фотометрию.

Масса

Точная масса звезды определяется, если это компонент двойной звезды. Для этого используется третий закон Кеплера. Также можно косвенно определить массу, к примеру, из зависимости светимость – масса. В 2010 году ученые предложили еще один способ вычисления массы. Он основывается на наблюдениях за прохождением планеты со спутником по диску звезды. Применив законы Кеплера и изучив все данные, определяют плотность и массу звезды, период вращения спутника и планеты и другие характеристики. На данный момент этот способ использовался на практике.

Химический состав

Химический состав зависит от вида звезды и ее массы. Крупные звезды не обладают элементами тяжелее гелия, а красные и желтые карлики относительно на них богаты. Это помогает звезде зажечься.

Структура

Выделяют три внутренние зоны: конвективную, ядро и зону лучистого переноса.

Конвективная зона. Здесь за счет конвенции происходит перенос энергии.

Ядро – центральная часть звезды, где проходят ядерные реакции.

Лучистая зона. Здесь перенос энергии происходит благодаря излучению фотонов. У малых звезд эта зона отсутствует, у крупных находится между конвективной зоной и ядром.

Атмосфера находится над поверхностью звезды. Она состоит из трех частей – хромосферы, фотосферы и короны. Фотосфера является самой глубокой ее частью.

Звездный ветер

Это процесс, при котором вещество из звезды стекает в межзвездное пространство. Он играет немаловажную роль в эволюции. В результате звездного ветра масса звезды уменьшается, значит, ее жизнь полностью зависит от интенсивности этого процесса.

Принципы обозначения звезд и каталоги

В галактике находится больше 200 миллиардов звезд. На фотоснимках крупных телескопов их настолько много, что не имеет смысла давать им всем имена и даже считать. Примерно 0,01 процента звезд нашей галактики занесено в каталоги. У каждого народа самые яркие звезды получили имена. К примеру, Алголь, Ригель, Альдебаран, Денеб и другие происходят с арабского.

В Уранометрии Байера звезды обозначаются буквами греч. алфавита в порядке убывания блеска (α – самая яркая, β – вторая по блеску). Если греческого алфавита не хватало, использовался латинский. Некоторые звезды называют именами ученых, которые описывали их уникальные свойства.

Большая Медведица

Созвездие Большая Медведица являет собой 7 эффектных звезд, которые отыскать на небе довольно просто. Помимо этих, в созвездии насчитывается еще 125 звезд. Это созвездие одно из самых крупных и захватывает на небе 1280 кв. градусов. Ученые выяснили, что звезды ковша находятся от нас на неравном расстоянии.

Ближе всех расположена звезда Алиот, самая дальняя – Бенетнаш. Для любителей астрономии это созвездие способно служить «тренировочным полигоном»:

·          Благодаря Большой Медведице можно с легкостью найти и другие созвездия.

·          В течение года оно четко показывает обращение неба за сутки и перестроение его вида.

·          Если запомнить угловые расстояния между звездами, можно проводить угловые приближенные измерения.

·          Имея едва ощутимый телескоп, можно рассмотреть переменные и двойные звезды в Большой Медведице.

Легенды и мифы созвездия

«Ковш» известен нам с давних времен. Древние греки утверждали, что это нимфа Калисто, которая была спутницей Артемиды и возлюбленной Зевса. Она проигнорировала  правила и навлекла немилость богини. Та обратила ее в медведицу и натравила собак. Чтобы возлюбленная Зевса была в безопасности, он поднял ее на небо. Событие это темное, и каждый раз в эту историю пытаются добавить что-то новое, как, например, подругу нимфы Каллисто, которую превратили в Малую Медведицу.

Большую Медведицу можно увидеть и днем, использовав интерактивную карту созвездий. Здесь Вы сможете найти другие малые и большие созвездия, посмотреть их в большом приближении. Все в Ваших руках с порталом Kvant.Space. 

kvant.space

виды звезд и их классификация по цвету и размеру

Каждый человек знает, как выглядят звезды на небе. Крошечные, сияющие холодным белым светом огоньки. В древности люди не могли придумать объяснения этому явлению. Звезды считали глазами богов, душами умерших предков, хранителями и защитниками, оберегающими покой человека в ночной тьме. Тогда никто и подумать не мог, что Солнце – это тоже звезда.

Что такое звезда

Много веков прошло, прежде чем люди поняли, что представляют собой звезды. Виды звезд, их характеристики, представления о происходящих там химических и физических процессах – это новая область знания. Древние астрономы даже предположить не могли, что такое светило на самом деле вовсе не крохотный огонек, а невообразимых размеров шар раскаленного газа, в котором происходят реакции

термоядерного синтеза. Есть странный парадокс в том, что неяркий звездный свет – это ослепительное сияние ядерной реакции, а уютное солнечное тепло – чудовищный жар миллионов кельвинов.

Все звезды, которые можно увидеть на небосводе невооруженным глазом, находятся в галактике Млечный Путь. Солнце – тоже часть этой звездной системы, причем расположено оно на ее окраине. Невозможно себе вообразить, как выглядело бы ночное небо, если бы Солнце находилось в центре Млечного Пути. Ведь количество звезд в этой галактике – более 200 миллиардов.

Немного об истории астрономии

Древние астрономы тоже могли бы рассказать необычное и интересное о звездах на небе. Уже шумеры выделяли отдельные созвездия и зодиакальный круг, они же впервые рассчитали деление полного угла на 3600. Они же создали лунный календарь и смогли синхронизировать его с солнечным. Египтяне считали, что Земля находится в центре Вселенной, но при этом знали, что Меркурий и Венера вращаются вокруг Солнца.

В Китае астрономией как наукой занимались уже в конце ІІІ тысячелетия до н. э., а

первые обсерватории появились в XII в. до н. э. Они изучали лунные и солнечные затмения, сумев при этом понять их причину и даже рассчитав прогнозные даты, наблюдали метеоритные потоки и траектории комет.

Древние инки знали различия между звездами и планетами. Есть косвенные доказательства того, что им были известны Галилеевы спутники Юпитера и визуальная размытость очертаний диска Венеры, обусловленная наличием на планете атмосферы.

Древние греки смогли доказать шарообразность Земли, выдвинули предположение о гелиоцентричности системы. Они пытались рассчитать диаметр Солнца, пускай и ошибочно. Но греки были первыми, кто в принципе предположил, что Солнце больше Земли, до этого все, полагаясь на визуальные наблюдения, считали иначе. Грек Гиппарх впервые создал каталог светил и выделил разные виды звезд. Классификация звезд в этом научном труде опиралась на интенсивность свечения. Гиппарх выделил 6 классов яркости, всего в каталоге было 850 светил.

На что обращали внимание древние астрономы

Первоначальная классификация звезд основывалась на их яркости. Ведь именно этот критерий является единственно доступным для астронома, вооруженного только телескопом. Самые яркие или обладающие уникальными видимыми свойствами звезды даже получали собственные имена, причем у каждого народа они свои. Так, Денеб, Ригель и Алголь – названия арабские, Сириус – латинское, а Антарес – греческое. Полярная звезда в каждом народе имеет собственное название. Это, пожалуй, одна из самых важных в «практическом смысле» звезд. Ее координаты на ночном небосводе неизменны, несмотря на вращение земли. Если остальные звезды движутся по небу, проходя путь от восхода до заката, то Полярная звезда не меняет своего местоположения. Поэтому именно ее использовали моряки и путешественники в качестве надежного ориентира. Кстати, вопреки распространенному заблуждению, это вовсе не самая яркая звезда на небосклоне. Полярная звезда внешне никак не выделяется – ни по размерам, ни по интенсивности свечения. Найти ее можно, только если знать, куда смотреть. Она располагается на самом конце «рукоятки ковша» Малой Медведицы.

На чем основывается звездная классификация

Современные астрономы, отвечая на вопрос о том, какие виды звезд бывают, вряд ли станут упоминать яркость свечения или расположение на ночном небосводе. Разве что в порядке исторического экскурса или в лекции, рассчитанной на совсем уж далекую от астрономии аудиторию.

Современная классификация звезд основывается на их спектральном анализе. При этом обычно еще указывают массу, светимость и радиус небесного тела. Все эти показатели даются в соотношении с Солнцем, то есть именно его характеристики приняты в качестве единиц измерения.

Классификация звезд опирается на такой критерий, как абсолютная звездная величина. Это видимая степень яркости небесного тела без атмосферы, условно расположенного на расстоянии 10 парсек от точки наблюдения.

Кроме этого учитывают переменности блеска и размеры звезды. Виды звезд в настоящее время определяются их спектральным классом и уже детальнее — подклассом. Астрономы Рассел и Герцшпрунг независимо друг от друга проанализировали зависимость между светимостью, абсолютной звездной величиной, температурной поверхностью и спектральным классом светил. Они построили диаграмму с соответствующими осями координат и обнаружили, что результат вовсе не хаотичен. Светила на графике располагались отчетливо различимыми группами. Диаграмма позволяет, зная спектральный класс звезды, определить хотя бы с приблизительной точностью ее абсолютную звездную величину.

Как рождаются звезды

Эта диаграмма послужила наглядным доказательством в пользу современной теории эволюции данных небесных тел. На графике отчетливо видно, что самым многочисленным классом являются относящиеся к так называемой главной последовательности звезды. Виды звезд, принадлежащих к этому сегменту, находятся в наиболее распространенной в данный момент во Вселенной точке развития. Это этап развития светила, при котором энергия, затраченная на излучение, компенсируется полученной в ходе термоядерной реакции. Длительность пребывания на данном этапе развития определяется массой небесного тела и процентным содержанием элементов тяжелее гелия.

Общепризнанная в данный момент теория эволюции звезд гласит, что на начальном

этапе развития светило представляет собой разряженное гигантское газовое облако. Под влиянием собственного тяготения оно сжимается, постепенно превращаясь в шар. Чем сильнее сжатие, тем интенсивнее гравитационная энергия переходит в тепловую. Газ раскаляется, и когда температура достигает 15-20 млн К, в новорожденной звезде запускается термоядерная реакция. После этого процесс гравитационного сжатия приостанавливается.

Основной период жизни звезды

Поначалу в недрах юного светила преобладают реакции водородного цикла. Это самый длительный период жизни звезды. Виды звезд, находящихся на этом этапе развития, и представлены в самой массовой главной последовательности описанной выше диаграммы. Со временам водород в ядре светила заканчивается, превратившись в гелий. После этого термоядерное горение возможно только на периферии ядра. Звезда становится ярче, ее внешние слои значительно расширяются, а температура понижается. Небесное тело превращается в красный гигант. Этот период жизни звезды

намного короче предыдущего. Дальнейшая ее судьба изучена мало. Есть различные предположения, но достоверных им подтверждений пока не получено. Самая распространенная теория гласит, что когда гелия становится слишком много, звездное ядро, не выдерживая собственной массы, сжимается. Температура растет до тех пор, пока уже гелий не вступает в термоядерную реакцию. Чудовищные температуры приводят к очередному расширению, и звезда превращается в красного гиганта. Дальнейшая судьба светила, по предположениям ученых, зависит от его массы. Но теории, касающиеся этого, всего лишь результат компьютерного моделирования, не подтвержденный наблюдениями.

Остывающие звезды

Предположительно, красные гиганты с малой массой будут сжиматься, превращаясь в карликов и постепенно остывая. Звезды средней массы могут трансформироваться в планетарные туманности, при этом в центре такого образования продолжит свое существование лишенное внешних покровов ядро, постепенно остывая и превращаясь в белого карлика. Если центральная звезда испускала значительное инфракрасное излучение, возникают условия для активации в расширяющейся газовой оболочке планетарной туманности космического мазера.

Массивные светила, сжимаясь, могут достигать такого уровня давления, что электроны буквально вминаются в атомные ядра, превращаясь в нейтроны. Поскольку между

этими частицами нет сил электростатического отталкивания, звезда может сжаться до размера нескольких километров. При этом ее плотность превысит плотность воды в 100 миллионов раз. Такая звезда называется нейтронной и представляет собой, по сути, огромное атомное ядро.

Сверхмассивные звезды продолжают свое существование, последовательно синтезируя в процессе термоядерных реакций из гелия – углерод, затем кислород, из него – кремний и, наконец, железо. На этом этапе термоядерной реакции и происходит взрыв сверхновой. Сверхновые звезды, в свою очередь, могут превратиться в нейтронные либо, если их масса достаточно велика, продолжить сжатие до критического предела и образовать черные дыры.

Размеры

Классификация звезд по размеру может быть реализована двояко. Физический размер звезды может определяться ее радиусом. Единицей измерения в этом случае выступает радиус Солнца. Существуют карлики, звезды средней величины, гиганты и сверхгиганты. Кстати, само Солнце является как раз карликом. Радиус нейтронных звезд может достигать всего нескольких километров. А в сверхгиганте целиком поместится орбита планеты Марс. Под размером звезды может также пониматься ее масса. Она тесно связана с диаметром светила. Чем звезда больше, тем ниже ее плотность, и наоборот, чем светило меньше, тем плотность выше. Этот критерий вирируется не так уж сильно. Звезд, которые были бы больше или меньше Солнца в 10 раз, очень мало. Большая часть светил укладывается в интервал от 60 до 0,03 солнечных масс. Плотность Солнца, принимаемая за стартовый показатель, составляет 1,43 г/см3. Плотность белых карликов достигает 1012 г/см3, а плотность разреженных сверхгигантов может быть в миллионы раз меньше солнечной.

В стандартной классификации звезд схема распределения по массе выглядит следующим образом. К малым относят светила с массой от 0,08 до 0,5 солнечной. К умеренным – от 0,5 до 8 солнечных масс, а к массивным – от 8 и более.

Классификация звезд. От голубых до белых

Классификация звезд по цвету на самом деле опирается не на видимое свечение тела, а на спектральные характеристики. Спектр излучения объекта определяется химическим составом звезды, от него же зависит ее температура.

Наиболее распространенной является Гарвардская классификация, созданная в начале 20 века. Согласно принятым тогда стандартам классификация звезд по цвету предполагает деление на 7 типов.

Так, звезды с самой высокой температурой, от 30 до 60 тыс. К, относят к светилам класса О. Они голубого цвета, масса подобных небесных тел достигает 60 солнечных масс (с. м.), а радиус – 15 солнечных радиусов (с. р.). Линии водорода и гелия в их спектре достаточно слабые. Светимость подобных небесных объектов может достигать 1 млн 400 тыс. солнечных светимостей (с. с.).

К звездам класса В относят светила с температурой от 10 до 30 тыс. К. Это небесные тела бело-голубого цвета, их масса начинается от 18 с. м., а радиус – от 7 с. м. Самая низкая светимость объектов такого класса составляет 20 тыс. с. с., а линии водорода в спектре усиливаются, достигая средних значений.

У звезд класса А температура колеблется от 7,5 до 10 тыс. К, они белого цвета. Минимальная масса таких небесных тел начинается от 3,1 с. м., а радиус – от 2,1 с. р. Светимость объектов находится в границах от 80 до 20 тыс. с. с. Линии водорода в спектре этих звезд сильные, появляются линии металлов.

Объекты класса F на самом деле желто-белого цвета, но выглядят белыми. Их температура колеблется в пределах от 6 до 7,5 тыс. К, масса варьируется от 1,7 до 3,1 с.м., радиус – от 1,3 до 2,1 с. р. Светимость таких звезд варьируется от 6 до 80 с. с. Линии водорода в спектре ослабевают, линии металлов, наоборот, усиливаются.

Таким образом, все виды белых звезд попадают в пределы классов от А до F. Дальше, согласно классификации, следуют желтые и оранжевые светила.

Желтые, оранжевые и красные звезды

Виды звезд по цвету распределяются от голубых к красным, по мере понижения температуры и уменьшения размеров и светимости объекта.

Звезды класса G, к которым относится и Солнце, достигают температуры от 5 до 6 тыс. К, они желтого цвета. Масса таких объектов – от 1,1 до 1,7 с. м., радиус – от 1,1 до 1,3 с. р. Светимость – от 1,2 до 6 с. с. Спектральные линии гелия и металлов интенсивны, линии водорода все слабее.

Светила, относящиеся к классу К, имеют температуру от 3,5 до 5 тыс. К. Выглядят они желто-оранжевыми, но истинный цвет этих звезд – оранжевый. Радиус данных объектов находится в промежутке от 0,9 до 1,1 с. р., масса – от 0,8 до 1,1 с. м. Яркость колеблется от 0,4 до 1,2 с. с. Линии водорода практически незаметны, линии металлов очень сильны.

Самые холодные и маленькие звезды – класса М. Их температура всего 2,5 – 3,5 тыс. К и кажутся они красными, хотя на самом деле эти объекты оранжево-красного цвета. Масса звезд находится в промежутке от 0,3 до 0,8 с. м., радиус – от 0,4 до 0,9 с. р. Светимость – всего 0,04 — 0,4 с. с. Это умирающие звезды. Холоднее их только недавно открытые коричневые карлики. Для них выделили отдельный класс М-Т.

fb.ru

формы звезды картинки, Фотографии и изображения

#44712163 — Star vector logo. Star icon. Leader boss star, winner, star rating,..

Вектор

Похожие изображения

Добавить в Лайкбокс

#41455928 — Hand drawn seamless pattern with doodle stars

Вектор

Похожие изображения

Добавить в Лайкбокс

#43822449 — Star vector logo icon template set

Вектор

Похожие изображения

Добавить в Лайкбокс

#22421476 — Isolated Merry Christmas colorful abstract shooting star with..

Вектор

Похожие изображения

Добавить в Лайкбокс

#46911781 — Single golden star shine on white background.

Вектор

Похожие изображения

Добавить в Лайкбокс

#21646051 — Brushed Golden Star Award

Похожие изображения

Добавить в Лайкбокс

#9942926 — Brushed Gold Star isolated on white.

Похожие изображения

Добавить в Лайкбокс

#28963363 — Stars Vector Shapes Set

Вектор

Похожие изображения

Добавить в Лайкбокс

#44675437 — 3d beveled star with rating. Vector Illustration.

Вектор

Похожие изображения

Добавить в Лайкбокс

#39941667 — Stars abstract background, eps 10

Вектор

Похожие изображения

Добавить в Лайкбокс

#12330819 — golden star isolated over white background 3d illustration

Похожие изображения

Добавить в Лайкбокс

#40734840 — Vector illustration of silver star

Вектор

Похожие изображения

Добавить в Лайкбокс

#35127989 — star icon

Вектор

Похожие изображения

Добавить в Лайкбокс

#59648114 — Vector illustration abstract Falling Star. Shooting Star with..

Вектор

Похожие изображения

Добавить в Лайкбокс

#53972726 — Broadway style light bulb star shape illustration

Вектор

Похожие изображения

Добавить в Лайкбокс

#47911209 — Vector illustration gold stars

Похожие изображения

ru.123rf.com

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *