Температура над Землей
Все, кто летал на самолете, привыкли к сообщению такого рода: «наш полет проходит на высоте 10 000 м, температура за бортом — 50 °С». Кажется, ничего особенного. Чем дальше от нагретой Солнцем поверхности Земли, тем холоднее. Многие думают, что понижение температуры с высотой идет непрерывно и постепенно температура падает, приближаясь к температуре космоса. Между прочем, так думали ученые вплоть до конца 19 века.
Разберемся подробнее с распределением температуры воздуха над Землей. Атмосферу подразделяют на несколько слоев, которые и отражают в первую очередь характер изменения температуры.
Нижний слой атмосферы называется тропосферой , что означает „сфера поворота». Все перемены погоды и климата являются результатом физических процессов, происходящих именно в этом слое. Верхняя граница этого слоя располагается там, где уменьшение температуры с высотой сменяется ее возрастанием,— примерно на высоте 15—16 км над экватором и 7—8 км над полюсами.
В 1899 г. в вертикальном профиле температуры на некоторой высоте был обнаружен ее минимум, а затем температура незначительно повышалась. Начало этого повышения означает переход к следующему слою атмосферы — к
Основная масса озона сосредоточена на высотах примерно 25 км, но в целом слой озона представляет собой сильно растянутую по высоте оболочку, охватывающую почти всю стратосферу. Взаимодействие кислорода с ультрафиолетовыми лучами — один из благоприятных процессов в земной атмосфере, способствующих поддержанию жизни на Земле. Поглощение озоном этой энергии препятствует излишнему поступлению ее на земную поверхность, где создается именно такой уровень энергии, который пригоден для существования земных форм жизни. Озоносфера поглощает часть лучистой энергии, проходщей через атмосферу. В результате этого в озоносфере устанавливается вертикальный градиент температуры воздуха примерно 0,62°С на 100 м, т. е, температура повышается с высотой вплоть до верхнего предела стратосферы — стратопаузы (50 км), достигая, по некоторым данным, 0 °С.
На высотах от 50 до 80 км располагается слой атмосферы, называемый мезосферой . Слово „мезосфера» означает „промежуточная сфера», здесь температура воздуха продолжает понижаться с высотой. Выше мезосферы, в слое, называемом термосферой , температура снова растет с высотой примерно до 1000°С, а затем очень быстро падает до —96°С. Однако падает не беспредельно, потом температура снова увеличивается.
Термосфера является первым слоем ионосферы
Самая внешняя область атмосферы, второй слой ионосферы, часто называется
Подробнее о процессах а атмосфере можно узнать на сайте «Земной климат» www.zemnoyklimat.ru
Похожие статьи на сайте:
Самое холодное место Солнечной системы — Луна
Почему небо голубое?
Температура внутри Земли
Британские плюшевые мишки сообщили из космоса о температуре
Почему звездное небо черное? (фотометрический парадокс)
Атмосфера Земли
Атмосфера Земли — это газовая оболочка нашей планеты, простирающаяся до тысячи километров ввысь над поверхностью планеты. Она характеризуется высокой динамичностью, физической неоднородностью и уязвимостью к биологическим факторам. На протяжении миллиардов лет истории атмосферы Земли, именно живые существа сильнее всего изменяли ее состав.Основные свойства атмосферы Земли
Атмосфера — это наш защитный купол от всяческого рода угроз из космоса. В ней сгорает большая часть метеоритов, которые падают на планету, а ее озоновый слой служит фильтром против ультрафиолетового излучения Солнца, энергия которого смертельна для живых существ. Кроме того, именно атмосфера поддерживает комфортную температуру у поверхности Земли — если бы не парниковый эффект, достигаемый за счет многократного отражения солнечных лучей от облаков, Земля была бы в среднем на 20-30 градусов холоднее. Кругооборот воды в атмосфере и движение воздушных масс не только уравновешивают температуру и влажность, но и создают земное разнообразие ландшафтных форм и минералов — такого богатства не встретить нигде в Солнечной системе.
Горение метеоров — один из подарков нашей атмосферы
Масса атмосферы составляет 5,2×1018 килограмм. Хотя газовые оболочки распространяются на многие тысячи километров от Земли, ее атмосферой считаются лишь те, которые вращаются вокруг оси со скоростью, равной скорости вращения планеты. Таким образом, высота атмосферы Земли составляет около 1000 километров, плавно переходя в космическое пространство в верхнем слое, экзосфере (от др. греческого «внешний шар»).
Состав атмосферы Земли. История развития
Хотя воздух и кажется однородным, он представляет собой смесь разнообразных газов. Если брать только те, которые занимают хотя бы тысячную долю объема атмосферы, их уже будет 12. Если же смотреть на общую картину, то в воздухе одновременно находится вся таблица Менделеева!
Однако добиться такого разнообразия Земле удалось не сразу. Только благодаря уникальным совпадениям химических элементов и наличию жизни атмосфера Земли стала столь сложной. Наша планета сохранила геологические следы этих процессов, что позволяет нам заглянуть на миллиарды лет назад:
Молодая Земля значительно отличалась от своего современного облика. Круглые «озера» — это кратеры от ударов многочисленных метеоритов, которые без труда проникали сквозь тонкую атмосферу.
- Первыми газами, которые окутали молодую Землю 4,3 миллиарда лет назад, были водород и гелий — фундаментальные составляющие атмосферы газовых гигантов вроде Юпитера. Это самые элементарные вещества — из них состояли остатки туманности, родившей Солнце и окружающие его планеты, и они обильно оседали вокруг гравитационных центров-планет. Их концентрация была не очень высока, а низкая атомная масса позволяла им улетучиваться в космос, что они делают до сих пор. На сегодняшний день их общая удельная масса составляет 0,00052% от общей массы атмосферы Земли (0,00002% водорода и 0,0005% гелия), что совсем мало.
- Однако внутри самой Земли крылась уйма веществ, которые стремились вырваться из раскаленных недр. Из вулканов было выброшено громадное количество газов — в первую очередь аммиак, метан и углекислый газ, а также сера. Аммиак и метан впоследствии разложились на азот, который ныне занимает львиную долю массы атмосферы Земли — 78%.
Вулканы — одни из главных участников формирования атмосферы
- Но настоящая революция в составе атмосферы Земли произошла вместе с приходом кислорода. Он появлялся и естественным путем — раскаленная мантия молодой планеты активно избавлялась от газов, запертых под земной корой. Кроме того, водяные пары, извергаемые вулканами, расщеплялись под воздействием солнечного ультрафиолета на водород и кислород.
Однако такой кислород не мог долго задерживаться в атмосфере. Он вступал в реакции с угарным газом, свободным железом, серой и множеством других элементов на поверхности планеты — а высокие температуры и солнечное излучение катализировало химические процессы. Изменило эту ситуацию только появление живых организмов.
- Во-первых, они начали выделять столько кислорода, что он не только окислил все вещества на поверхности, но и начал накапливаться — за пару миллиардов лет его количество выросло с ноля до 21% процента всей массы атмосферы.
- Во-вторых, живые организмы активно использовали углерод атмосферы для построения собственных скелетов. В итоге их деятельности земная кора пополнилась целыми геологическими пластами органических материалов и ископаемых, а углекислого газа стало куда меньше
Известняк с останками древних безпозвоночных организмов
- И, наконец, избыток кислорода сформировал озоновый слой, который стал защищать живые организмы от ультрафиолета. Жизнь стала эволюционировать активнее и приобретать новые, более сложные формы — среди бактерий и водорослей стали появляться высокоорганизованные существа. Сегодня в озон занимает всего 0,00001% всей массы Земли.
Вам уже наверняка известно, что синий цвет неба на Земле тоже создается кислородом — из всего радужного спектра Солнца он лучше всего рассеивает короткие волны света, отвечающие за синий цвет. Этот же эффект действует в космосе — на расстоянии Земля будто окутывается голубой дымкой, а издали и вовсе превращается в синюю точку.
Кроме того, в атмосфере в значительном количестве присутствуют благородные газы. Среди них больше всего аргона, доля которого в атмосфере составляет 0,9–1%. Его источник — ядерные процессы в глубинах Земли, а попадает на поверхность он через микротрещины в литосферных плитах и вулканические извержения (таким же образом появляется гелий в атмосфере). Из-за своих физических особенностей благородные газы поднимаются в верхние слои атмосферы, где улетучиваются в космическое пространство.
Смог над Китаем, вид из космоса
Как мы можем видеть, состав атмосферы Земли менялся уже не раз, и притом очень сильно — но на это понадобились миллионы лет. С другой стороны, жизненно важные явления очень устойчивы — озоновый слой будет существовать и функционировать, даже если на Земле будет в 100 раз меньше кислорода. На фоне общей истории планеты, деятельность человека не оставила серьезных следов. Однако в локальных масштабах цивилизация способна создавать проблемы — по крайней мере, для себя. Загрязнители воздуха уже сделали жизнь жителей китайского Пекина опасной — а громадные облака грязного тумана над большими городами видны даже из космоса.
Структура атмосферы
Однако экзосфера — это не единственный особый слой нашей атмосферы. Их существует немало, и каждый из них обладает своими уникальными характеристиками. Давайте рассмотрим несколько основных:
Строение атмосферы. Смотреть в полном размере.
Тропосфера
Самый нижний и наиболее плотный слой атмосферы называется тропосферой. Читатель статьи сейчас находится именно в его «придонной» части — если, конечно, он не является одним из 500 тысяч человек, которые летят прямо сейчас в самолете. Верхний предел тропосферы зависит от широты (помните о центробежной силе вращения Земли, из-за которой планета шире на экваторе?) и колеблется от 7 километров на полюсах до 20 километров на экваторе. Также размеры тропосферы зависит от сезона — чем теплее воздух, тем выше поднимается верхний предел.
Название «тропосфера» происходит от древнегреческого слова «tropos», которое переводится как «поворот, изменение». Это достаточно точно отображает свойства слоя атмосферы — он наиболее динамичный и продуктивный. Именно в тропосфере собираются облака и циркулирует вода, создаются циклоны и антициклоны и генерируются ветра — происходят все те процессы, которые мы называем «погода» и «климат». Кроме того, это самый массивный и плотный слой — на него приходится 80% массы атмосферы и почти все содержание воды в ней. Тут же обитает большая часть живых организмов.
Слои атмосферы из космоса. Самый нижний, оранжевый слой — тропосфера.
Всем известно, что чем выше подниматься, тем холоднее становится. Это действительно так — каждые 100 метров вверх температура воздуха падает на 0,5-0,7 градуса. Тем не менее принцип работает только в тропосфере — дальше температура с ростом высоты начинает повышаться. Зона между тропосферой и стратосферой, где температура остается неизменной, называется тропопаузой. А еще с высотой убыстряется течение ветра — на 2–3 км/с на километр ввысь. Поэтому пара- и дельтапланеристы предпочитают для полетов возвышенные плато и горы — там всегда удастся «поймать волну».
Круговорот воды в природе
Уже упомянутое воздушное дно, где атмосфера контактирует с литосферой, называется приземным пограничным слоем. Его роль в циркуляции атмосферы невероятно велика — отдача тепла и излучения от поверхности создает ветры и перепады давления, а горы и другие неровности рельефа направляют и разделяют их. Тут же происходит водообмен — за 8–12 дней вся вода, взятая из океанов и поверхности, возвращается обратно, превращая тропосферу в своеобразный водный фильтр.
- Интересный факт — на водообмене с атмосферой завязан важный процесс в жизнедеятельности растений — транспирация. С ее помощью флора планеты активно влияет на климат — так, большие зеленые массивы смягчают погоду и перепады температуры. Растения в насыщенных водой местах испаряют 99% воды, взятой из почвы. К примеру, гектар пшеницы за лето выбрасывает в атмосферу 2–3 тысячи тонн воды — это значительно больше, чем могла бы отдать безжизненная почва.
Нормальное давление у поверхности Земли — около 1000 миллибар. Эталоном считается давление в 1013 мБар, которое составляет одну «атмосферу» — с этой единицей измерения вы уже наверняка сталкивались. С ростом высоты давление стремительно падает: у границ тропосферы (на высоте 12 километров) оно составляет уже 200 мБар, а на высоте 45 километров и вовсе падает до 1 мБар. Поэтому не странно, что именно в насыщенной тропосфере собрано 80% все массы атмосферы Земли.
Стратосфера
Слой атмосферы, располагающийся в диапазоне между 8 км высоты (на полюсе) и 50 км (на экваторе), называется стратосферой. Название происходит от др. греческого слова «stratos», которое значит «настил, слой». Это крайне разреженная зона атмосферы Земли, в которой почти нет водного пара. Давление воздуха в нижней части стратосферы в 10 раз меньше приповерхностного, а в верхней части — в 100 раз.
В разговоре о тропосферу мы уже узнали, что температура в ней понижается в зависимости от высоты. В стратосфере все происходит с точностью до наоборот — с набором высоты температура вырастает от –56°C до 0–1°С. Прекращается нагрев в стратопаузе, границе между страто- и мезосферами.
Вид на Землю из стратосферы. Облака сверху выглядят даже меньшими, чем снизу
Жизнь и человек в стратосфере
Пассажирские лайнеры и сверхзвуковые самолеты обычно летают в нижних слоях стратосферы — это не только защищает их от нестабильности воздушных потоков тропосферы, но и упрощает их движение за счет малого аэродинамического сопротивления. А низкие температуры и разреженность воздуха позволяют оптимизировать потребление топлива, что особенно важно для дальних перелетов.
Однако существует технический предел высоты для самолета — приток воздуха, которого в стратосфере так мало, необходим для работы реактивных двигателей. Соответственно, для достижения нужного давления воздуха в турбине самолету приходится двигаться быстрее скорости звука. Поэтому высоко в стратосфере (на высоте 18–30 километров) могут передвигаться только боевые машины и сверхзвуковые самолеты вроде «Конкордов». Так что основными «обитателями» стратосферы являются метеорологические зонды, прикрепленные к воздушным шарам — там они могут оставаться длительное время, собирая информацию о динамике нижележащей тропосферы.
Конкорд — пассажирский сверхзвуковой самолет
Читателю уже наверняка известно, что вплоть до самого озонового слоя в атмосфере встречаются микроорганизмы — так называемый аэропланктон. Однако не одни бактерии способны выживать в стратосфере. Так, однажды в двигатель самолета на высоте 11,5 тысяч метров попал африканский сип — особая разновидность грифа. А некоторые утки во время миграций спокойно пролетают над Эверестом.
Но самым большим существом, побывавшим в стратосфере, остается человек. Текущий рекорд по высоте был установлен Аланом Юстасом — вице-президентом компании Google. В день прыжка ему было 57 лет! На специальном воздушном шаре он поднялся на высоту 41 километр над уровнем моря, а затем спрыгнул вниз с парашютом. Скорость, которую он развил в пиковый момент падения, составила 1342 км/ч — больше скорости звука! Одновременно Юстас стал первым человеком, самостоятельно преодолевшим звуковой порог скорости (не считая скафандра для поддержки жизнедеятельности и парашютов для приземления в целом виде).
- Интересный факт — для того чтобы отсоединиться от воздушного шара, Юстасу понадобилось взрывное устройство — вроде того, что используется космическими ракетами при отсоединении ступеней.
Алан Юстас в скафандре. Прыжок был совершен только в защитном костюме — без герметических капсул и прочих защитных мер.
Озоновый слой
А еще на границе между стратосферой и мезоферой находится знаменитый озоновый слой. Он защищает поверхность Земли от воздействия ультрафиолетовых лучей, а заодно служит верхней границей распространения жизни на планете — выше него температура, давление и космическое излучение быстро положат конец даже самым стойким бактериям.
Откуда же взялся этот щит? Ответ невероятен — он был создан живыми организмами, точнее — кислородом, которые разнообразные бактерии, водоросли и растения выделяли с незапамятных времен. Поднимаясь высоко по атмосфере, кислород контактирует с ультрафиолетовым излучением и вступает в фотохимическую реакцию. В итоге из обычного кислорода, которым мы дышим, O2, получается озон — O3.
Парадоксально, но созданный излучением Солнца озон защищает нас от этого же излучения! А еще озон не отражает, а поглощает ультрафиолет — тем самым он нагревает атмосферу вокруг себя.
Фиолетовый жидкий озон и синий кислород при температуре ниже –180°C
Мезосфера
Мы уже упоминали, что над стратосферой — точнее, над стратопаузой, пограничной прослойкой стабильной температуры — находится мезосфера. Этот относительно небольшой слой располагается между 40–45 и 90 километров высоты и является самым холодным местом в нашей планете — в мезопаузе, верхнем слое мезосферы, воздух охлаждается до –143°C.
Мезосфера является наименее изученной частью атмосферы Земли. Экстремально малое давление газов, которое от тысячи до десяти тысяч раз ниже поверхностного, ограничивает движение воздушных шаров — их подъемная сила доходит до нуля, и они попросту зависают на месте. То же происходит с реактивными самолетами — аэродинамика крыла и корпуса самолета теряют свой смысл. Поэтому летать в мезосфере могут либо ракеты, либо самолеты с ракетными двигателями — ракетопланы. К таким относится ракетоплан X-15, который удерживает позицию самого быстрого самолета в мире: он достиг высоты в 108 километров и скорости 7200 км/ч — в 6,72 раза больше скорости звука.
X-15 в полете
Однако рекордный полет X-15 составил всего 15 минут. Это символизирует общую проблему движущихся в мезосфере аппаратов — они слишком быстры, чтобы провести какие-либо основательные исследования, и находятся на заданной высоте недолго, улетая выше или падая вниз. Также мезосферу нельзя исследовать при помощи спутников или суборбитальных зондов — пусть давление в этом слое атмосферы и низкое, оно тормозит (а порой и сжигает) космические аппараты. Из-за этих сложностей ученые часто называют мезосферу «незнайкосферой» (от англ. «ignorosphere», где «ignorance» — невежество, незнание).
А еще именно в мезосфере сгорает большинство метеоров, падающих на Землю — именно там вспыхивает метеоритный поток Персеиды, известный как «августовский звездопад». Световой эффект происходит тогда, когда космическое тело входит в атмосферу Земли под острым углом со скоростью больше 11 км/ч — от силы трения метеорит загорается.
Персеиды. Снято в 2015 году
Растеряв свою массу в мезосфере, остатки «пришельцев» оседают на Землю в виде космической пыли — каждый день на планету попадает от 100 до 10 тысяч тонн метеоритного вещества. Поскольку отдельные пылинки очень легкие, на путь к поверхности Земли у них уходит до одного месяца! Попадая в тучи, они утяжеляют их и даже иногда вызывают дожди — как вызывает их вулканический пепел или частицы от ядерных взрывов. Однако сила влияния космической пыли на дождеобразование считается небольшой — даже 10 тысяч тонн маловато, чтобы серьезно изменить естественную циркуляцию атмосферы Земли.
Термосфера
Над мезосферой, на высоте 100 километров над уровнем моря, проходит линия Кармана — условная граница между Землей и космосом. Хотя там и присутствуют газы, которые вращаются вместе с Землей и технически входят в атмосферу, их количество выше линии Кармана незримо мало. Поэтому любой полет, который выходит за высоту 100 километров, уже считается космическим.
С линией Кармана совпадает нижняя граница самого протяженного слоя атмосферы — термосферы. Она поднимается до высоты 800 километров и отличается чрезвычайно высокой температурой — на высоте 400 километров она достигает максимума в 1800°C!
Шаттл на линии Кармана. На фото отчетливо видны все слои атмосферы
Горячо, не правда ли? При температуре в 1538°C начинает плавиться железо — как же тогда космические аппараты остаются целыми в термосфере? Все дело в чрезвычайно низкой концентрации газов в верхней атмосфере — давление посередине термосферы в 1000000 меньше концентрации воздуха у поверхности Земли! Энергия отдельно взятых частиц высока — но расстояние между ними огромное, и космические аппараты фактически находятся в вакууме. Это, впрочем, не помогает им избавляться от тепла, которое выделяют механизмы — для тепловыделения все космические аппараты оснащены радиаторами, которые излучают избыточную энергию.
- На заметку. Когда речь идет о высоких температурах, всегда стоит учитывать плотность раскаленной материи — так, ученые на Андронном Коллайдере действительно могут нагреть вещество до температуры Солнца. Но очевидно, что это будут отдельные молекулы — одного грамма вещества звезды хватило бы для мощнейшего взрыва. Поэтому не стоит верить желтой прессе, которая обещает нам скорый конец света от «рук» Коллайдера, как и не стоит бояться жара в термосфере.
Термосфера и космонавтика
Термосфера фактически является открытым космосом — именно в ее пределах пролегала орбита первого советского «Спутника». Там же был апоцентр — наивысшая точка над Землей — полета корабля «Восток-1» с Юрием Гагариным на борту. Многие искусственные спутники для изучения поверхности Земли, океана и атмосферы, вроде спутников Google Maps, тоже запускаются на эту высоту. Поэтому если речь идет о НОО (Низкой Опорной Орбите, расхожий термин в космонавтике), в 99% случаев она находится в термосфере.
Корабль Восток-1 на орбите в представлении художника
Орбитальные полеты людей и животных не просто так происходят в термосфере. Дело в том, что в ее верхней части, на высоте от 500 километров, простираются радиационные пояса Земли. Именно там заряженные частицы солнечного ветра ловятся и накапливаются магнитосферой. Длительное нахождение в радиационных поясах приносит непоправимый вред живым организмам и даже электронике — поэтому все высокоорбитальные аппараты обладают защитой от радиации.
Полярные сияния
В полярных широтах часто появляется зрелищное и грандиозное зрелище — полярные сияния. Они выглядят как длинные светящиеся дуги разнообразных цветов и форм, которые переливаются в небе. Их появлению Земля обязана своей магнитосферой — а, точнее, прорехами в ней возле полюсов. Заряженные частицы солнечного ветра прорываются внутрь, заставляя атмосферу светиться. Полюбоваться на самые зрелищные сияния и узнать подробнее их происхождение можно тут.
Сейчас сияния являются обыденностью для жителей приполярных стран, таких как Канада или Норвегия, а также обязательным пунктом в программе любого туриста — однако раньше им приписывались сверхъестественные свойства. В разноцветных огнях людям древности виделись врата в рай, мифические существа и костры духов, а их поведение считали прорицаниями. И наших предков можно понять — даже образование и вера в собственный разум порой не могут сдержать благоговения перед силами природы.
Полярное сияние из МКС
Экзосфера
Последний слой атмосферы Земли, нижняя граница которого проходит на высоте 700 километров — это экзосфера (от др. греческого коря «экзо» — вне, снаружи). Она невероятно рассеянная и состоит преимущественно из атомов легчайшего элемента — водорода; также попадаются отдельные атомы кислорода и азота, которые сильно ионизированы всепроникающим излучением Солнца.
Размеры экзосферы Земли невероятно велики — она перерастает в корону Земли, геокорону, которая растянута до 100 тысяч километров от планеты. Она очень разрежена — концентрация частиц в миллионы раз меньше плотности обычного воздуха. Но если Луна заслонит Землю для отдаленного космического корабля, то корона нашей планеты будет видна, как видна нам корона Солнца при его затмении. Однако наблюдать это явление пока не удавалось.
Спутник Google Maps. Аппараты для крупномасштабной съемки обычно находятся на орбитах внутри экзосферы
Выветривание атмосферы
А еще именно в экзосфере происходит выветривание атмосферы Земли — из-за большого расстояния от гравитационного центра планеты частички легко отрываются от общей газовой массы и выходят на собственные орбиты. Это явление называется диссипацией атмосферы. Наша планета ежесекундно теряет 3 килограмма водорода и 50 грамм гелия из атмосферы. Только эти частицы достаточно легки, чтобы покинуть общую газовую массу.
Несложные расчеты показывают, что Земля ежегодно теряет около 110 тысяч тонн массы атмосферы. Опасно ли это? На самом деле нет — мощности нашей планеты по «производству» водорода и гелия превышают темпы потерь. Кроме того, часть потерянного вещества со временем возвращается обратно в атмосферу. А важные газы вроде кислорода или углекислого газа попросту слишком тяжелы, чтобы массово покидать Землю — поэтому не стоит бояться, что атмосфера нашей Земли улетучится.
- Интересный факт — «пророки» конца света часто говорят, что если ядро Земли перестанет вращаться, атмосфера быстро выветрится под напором солнечного ветра. Однако наш читатель знает, что удерживают атмосферу возле Земли силы гравитации, которые будут действовать вне зависимости от вращения ядра. Ярким доказательством этого служит Венера, у которой неподвижное ядро и слабое магнитное поле, но зато атмосфера в 93 раза плотнее и тяжелее земной. Однако это не значит, что прекращение динамики земного ядра безопасно — тогда исчезнет магнитное поле планеты. Его роль важна не столько в сдерживании атмосферы, сколько в защите от заряженных частиц солнечного ветра, которые легко превратят нашу планету в радиоактивную пустыню.
Облака
Вода на Земле существует не только в необъятном океане и многочисленных реках. Около 5,2 ×1015 килограмм воды находится в атмосфере. Она присутствует практически везде — доля пара в воздухе колеблется от 0,1% до 2,5% объема в зависимости от температуры и местоположения. Однако больше всего воды собрано в облаках, где она хранится не только в виде газа, но и в маленьких капельках и ледяных кристаллах. Концентрация воды в тучах достигает 10г/м3 — а так как облака достигают объема в несколько кубических километров, масса воды в них исчисляется десятками и сотнями тонн.
Разнообразные классы облаков
Облака — это самое заметное образование нашей Земли; они видны даже с Луны, где очертания континентов размываются перед невооруженным глазом. И это не странно — ведь тучами постоянно покрыто больше 50% Земли!
В теплообмене Земли облака играют невероятно важную роль. Зимой они захватывают солнечные лучи, повышая температуру под собой за счет парникового эффекта, а летом экранируют громадную энергию Солнца. Также облака уравновешивают перепады температуры между днем и ночью. К слову, именно из-за их отсутствия пустыни так сильно остывают ночью — все накопленное песком и скалами тепло беспрепятственно улетает ввысь, когда в других регионах его удерживают тучи.
Преобладающее большинство туч формируются у поверхности Земли, в тропосфере, однако в своем дальнейшем развитии они принимают самые разнообразные формы и свойства. Их разделение весьма полезно — появление туч различных видов может не только помочь предсказывать погоду, но и определять наличие примесей в воздухе! Давайте рассмотрим основные типы облаков подробнее.
Облако из космоса
Облака нижнего яруса
Тучи, которые опускаются ниже всего над землей, относят к облакам нижнего яруса. Им характерна высокая однородность и низкая масса — когда они опускаются на землю, ученые-метеорологи не отделяют их от обычного тумана. Тем не менее разница между ними есть — одни просто заслоняют небо, а другие могут разразиться большими дождями и снегопадами.
- К тучам, способным дать сильные осадки, относятся слоисто-дождевые облака. Они самые большие среди туч нижнего яруса: их толщина достигает нескольких километров, а линейные измерения превышают тысячи километров. Они представляют собой однородную серую массу — взгляните на небо во время продолжительного дождя, и вы наверняка увидите слоисто-дождевые облака.
- Другой вид облаков нижнего яруса — это слоисто-кучевые облака, поднимающиеся над землей на 600–1500 метров. Они представляют собой группы из сотен серо-белых туч, разделенных небольшими просветами. Такие облака мы обычно видим в дни переменной облачности. С них редко идет дождь или снег.
- Последний вид нижних облаков — это обычные слоистые облака; именно они застилают небо в пасмурные дни, когда с неба пускается мелкая морось. Они очень тонкие и низкие — высота слоистых облаков в максимуме достигает 400–500 метров. Их структура очень напоминает строение тумана — опускаясь ночью к самой земле, они часто создают густую утреннюю дымку.
Слоисто-кучевые облака
Облака вертикального развития
У туч нижнего яруса есть старшие братья — облака вертикального развития. Хотя их нижняя граница пролегает на небольшой высоте в 800–2000 километров, облака вертикального развития серьезно устремляются вверх — их толщина может достигать 12–14 километров, что подталкивает их верхний предел к границам тропосферы. Еще такие облака называют конвективными: из-за больших размеров вода в них приобретает разную температуру, что порождает конвекцию — процесс перемещения горячих масс наверх, и холодных — вниз. Поэтому в облаках вертикального развития одновременно существуют водный пар, мелкие капельки, снежинки и даже целые кристаллы льда.
- Основным типом вертикальных облаков являются кучевые облака — громадные белые тучи, напоминающие рваные куски ваты или айсберги. Для их существования необходима высокая температура воздуха — поэтому в средней полосе России они появляются только летом и тают к ночи. Их толщина достигает нескольких километров.
- Однако когда кучевые облака имеют возможность собраться вместе, они создают куда более грандиозную форму — кучево-дождевые облака. Именно с них идут сильные ливни, град и грозы летом. Существуют они только несколько часов, но при этом разрастаются ввысь до 15 километров — верхняя их часть достигает температуры –10°C и состоит из кристалликов льда.На верхушках самых больших кучево-дождевых туч формируются «наковальни» — плоские области, напоминающие гриб или перевернутый утюг. Это происходит на тех участках, где облако достигает границы стратосферы — физика не позволяет распространяться дальше, из-за чего кучево-дождевая туча расползается вдоль предела высоты.
Большое кучево-дождевое облако
- Интересный факт — мощные кучево-дождевые облака формируются в местах извержений вулканов, ударов метеоритов и ядерных взрывов. Эти тучи являются самыми большими — их границы достигают даже стратосферы, выбираясь на высоту 16 километров. Будучи насыщенными испаренной водой и микрочастицами, они извергают мощные грозовые ливни — в большинстве случаев этого достаточно, чтобы потушить связанные с катаклизмом возгорания. Вот такой вот природный пожарный 🙂
Облака среднего яруса
В промежуточной части тропосферы (на высоте от 2–7 километров в средних широтах) находятся облака среднего яруса. Им свойственны большие площади — на них меньше влияют восходящие потоки от земной поверхности и неровности ландшафта — и небольшая толщина в несколько сот метров. Это те облака, которые «наматываются» вокруг острых пиков гор и зависают возле них.
Сами облака среднего яруса делятся на два основных типа — высокослоистые и высококучевые.
- Высокослоистые облака — это одна из составляющих сложных атмосферных масс. Они представляют собой однородную, серовато-синюю пелену, через которую видны Солнце и Луна — хотя протяженность высокослоистых облаков составляет тысячи километров, их толщина составляет всего несколько километров. Серая плотная пелена, которая видна из иллюминатора самолета, летящего на большой высоте — это именно высокослоистые облака. Часто из них идут длительные дожди или снег.
Высококучевые и высокослоистые облака
- Высококучевые облака, напоминающие мелкие куски рваной ваты или тонкие параллельные полосы, встречаются в теплую пору года — они образуются при поднятии теплых воздушных масс на высоту 2–6 километров. Высококучевые облака служат верным индикатором грядущей перемены погоды и приближения дождя — создать их может не только естественная конвекция атмосферы, но и наступления холодных воздушных масс. С них редко идет дождь — однако тучи могут сбиться вместе и создать одно большое дождевое облако.
К слову о тучах возле гор — на фотографиях (а, может, и вживую) вы наверняка не раз видели круглые облака, напоминающие ватные диски, которые зависают слоями над горной вершиной. Дело в том, что облака среднего яруса часто бывают лентикулярными или линзовидными — разделенными на несколько параллельных слоев. Их создают воздушные волны, образующиеся при обтекании ветром крутых пиков. Линзовидные тучи также особенны тем, что висят на месте даже при самом сильном ветре. Это делает возможным их природа — поскольку такие облака создаются в местах контакта нескольких воздушных потоков, они находятся в относительно стабильной позиции.
Лентикулярные облака над горой Фудзи, Япония
Облака верхнего яруса
Последний уровень обычных туч, которые поднимаются до нижних пределов стратосферы, называется верхним ярусом. Высота таких облаков достигает 6–13 километров — там очень холодно, и потому облака на верхнем ярусе состоят из мелких льдинок. Из-за их волокнистой растянутой формы, напоминающей перья, высокие облака также называются перистыми — хотя причуды атмосферы часто придают им форму когтей, хлопьев и даже рыбьих скелетов. Осадки, которые образуются с них, никогда не достигают земли — но само присутствие перистых облаков служит древним способом предсказывать погоду.
- Чисто-перистые облака являются самыми протяженными среди туч верхнего яруса — длина отдельного волокна может достигать десятка километров. Так как кристаллы льда в тучах достаточно большие, чтобы ощущать на себе притяжение Земли, перистые облака «падают» целыми каскадами — расстояние между верхней и нижней точкой отдельно взятого облака может достигать 3-4 километров! По сути, перистые тучи — это громадные «ледопады». Именно различия в форме кристаллов воды создают их волокнистую, потокообразную форму.
- В этом классе попадаются и практически невидимые облака — перисто-слоистые облака. Они образуются тогда, когда большие массы приповерхностного воздуха поднимаются ввысь — на большой высоте их влажности достаточно для формирования облака. Когда сквозь них просвечивает Солнце или Луна, появляется гало — сияющий радужный диск из рассеянных лучей.
Перистые облака
Серебристые облака
В отдельный класс стоит выделить серебристые облака — самые высокие тучи на Земле. Они забираются на высоту 80 километров, что даже выше стратосферы! Кроме того, они имеют необычный состав — в отличие от других облаков, они состоят из метеоритной пыли и метана, а не воды. Эти тучи видны только после заката или перед рассветом — лучи Солнца, проникающие из-за горизонта, подсвечивают серебристые облака, которые в течение дня остаются невидимыми на высоте.
Серебристые облака представляют собой невероятно красивое зрелище — однако чтобы увидеть их в Северном полушарии, нужны особые условия. А еще их загадку было не так просто разгадать — ученые в бессилии отказывались в них верить, объявляя серебристые тучи оптической иллюзией. Посмотреть на необычные облака и узнать о их секретах вы можете из нашей специальной статьи.
Серебристые облака
Атмосфера Земли в астрономии
В заглавной статье мы упоминали о том, что Земля служит главным инструментом познания других миров. Не является исключением и ее атмосфера — сопоставляя земные и инопланетные явления, астрономы узнают древнюю историю близких и не очень планет.
К примеру, цвет атмосферы других планет открывает нам тайны ее состава. Атмосфера Марса имеет такой же красный оттенок, как и его поверхность. Это связано с тем, что доминирующий газ на Марсе — это углекислый газ. То же самое касается экзопланет. Анализируя их цветовой спектр, мы можем узнать о составе атмосферы — даже не представляя, как планета выглядит.
А состав атмосферы, как мы знаем, может многое рассказать нам о планете. Если много углекислого газа — значит, на планете бушуют вулканы и происходят активные геологические процессы. Водные пары в атмосфере не гарантируют океанов на поверхности, но зато являются источником кислорода. А существующий избыток кислорода является почти стопроцентной гарантией наличие жизни. Ведь мы с вами уже знаем, что кислород из неживых источников сразу же тратится на химические реакции, и для его накапливания требуется биотический источник.
На Марсе тоже есть атмосфера и даже облака
Кроме того, все газы и жидкости циркулируют по схожим химическим законам. Хотя вода и является уникальным по свойствам веществом, она не является незаменимым компонентом атмосферы. На Титане, спутнике Сатурна, существует газовая оболочка, схожая по строению с земной. В ней формируются все те же классы облаков, так же циркулирует жидкость в атмосфере — но ее температура на сотню градусов ниже, а вместо воды фигурирует метан!
А еще атмосфера оставляет ярко выраженные следы на поверхности Земли. Признаки ветровой эрозии остаются даже после того, как космический объект потеряет свою атмосферу. Сравнивая инопланетные и Земные ландшафты, можно с точностью определить их историю — так, теоретические изыскания, сделанные по спутниковым снимкам рельефа Марса, нашли свое подтверждение во время работы марсоходов.
Понравилась запись? Расскажи о ней друзьям!
Просмотров записи: 58035
Запись опубликована: 31.01.2016
Автор: Виталий Патинскас
Где же ты, космос? Атмосфера нашей планеты – Федерация космонавтики
Атмосфера Земли является нашим естественным щитом от весьма недружественного, порой очень сурового космического пространства. Ультрафиолетовое излучение, метеоры, осколки комет и астероидов, не сгоревшие элементы спутников – все это стремится нанести жителям нашей планеты ущерб. Но атмосфера имеет для нас важнейшее значение, не только как защитная оболочка, благодаря ей мы душим, а погодные условия, формируемые атмосферой, позволяют регулировать температуру на планете.
Атмосфера состоит из различных газовых слоев, называемых «воздухом», которые окружают планету и удерживаются под действием силы тяжести Земли. «Воздух» – это общее название комбинации газов, используемых организмами для дыхания и фотосинтеза. По объему, сухой воздух содержит 78,09% азота, 20,95% кислорода, 0,93% аргона, 0,039% диоксида углерода и различные другие газы в очень малом количестве. Содержание воды в атмосфере (в виде водяных паров) колеблется от 0,2 % до 2,5 % по объему, и зависит в основном от широты.
Значения состава воздуха и атмосферное давление не соответствуют всей атмосфере, но изменяются на разных высотах, давая атмосфере пять различных слоев.
Для начала посмотрим на инфографику (для увеличения картинки нажмите на нее), а затем подробнее рассмотрим каждый из слоев.
Атмосфера и пять ее слоев
Пять слоев атмосферы
Тропосфера
Начиная от поверхности Земли, тропосфера простирается до высоты около 8-10 км.
Стратосфера
Этот слой атмосферы расположен на высоте от 11 до 50 км над поверхностью Земли. В отличие от тропосферы, здесь температура воздуха наоборот возрастает с увеличением ее высоты. Причем в нижней части стратосферы, в промежутке от 11 до 25 км, температура изменяется не значительно, а от 25 до 40 км, в области инверсии, воздух прогревается почти до 0°С. Такой температура остается до высоты примерно в 55 км. Коммерческие реактивные самолеты, когда это возможно, летают в нижней части стратосферы, чтобы избежать большой турбулентности, которая значительно проявляется в тропосфере, за счет конвекции. Ведь именно в тропосфере возникают облака, развиваются циклоны и антициклоны, т.е. формируется погода.
Мезосфера
Третий слой атмосферы Земли, простирающийся на высоте от 50 до 90 км. Это одно из самых холодных мест на планете, средняя температура здесь составляет около -85°C. Именно здесь большинство метеоров сгорают при входе в атмосферу Земли, а также, именно этот промежуток является самым высоким местом, в котором может образоваться облако.
Термосфера
Именно здесь проходит линия Кармана, которая условно расположена на высоте около 100 км и которая принимается в качестве границы между атмосферой Земли и космосом. Термосфера находится на высоте примерно от 85 до 640 км от поверхности Земли. Температура здесь растет до высоты примерно в 300 км, где достигает значений порядка 1220 °C, после чего остается малоизменяемой до больших высот. В термосфере ультрафиолетовое и рентгеновское излучение вызывают массовые температурные колебания, а сама температура здесь сильно зависит от солнечной активности и может варьироваться от -120°C до 2000°C.
В термосфере кривизна Земли становится отчетливо ясной и видимой, и космические путешественники именно здесь начинают испытывать «невесомость». Под действием солнечной радиации и космического излучения происходит сильная ионизация воздуха, что часто можно наблюдать в таком явлении, как полярное сияние.
Экзосфера
Конечный слой атмосферы Земли, где она постепенно переходит к бескрайнему космическому пространству. Этот слой простирается на высоте от 710 до почти 10000 км. Атмосфера в экзосфере невероятно тонкая и больше не ведет себя как обычный газ. Атомы и молекулы настолько далеки друг от друга, что они могут путешествовать на сотни километров, не сталкиваясь один с другим. Именно в пределах этого слоя атмосферы находится большая часть орбитальных спутников на низкой околоземной орбите.
Несколько фотографий
Атмосфера Земли уникальна — Маглипогода
0 0 голоса
Рейтинг
Поделиться:Благодаря ее нынешнему составу атмосферы на нашей планете существует жизнь. Случись здесь катастрофа, которая привела бы к быстрому убеганию атмосферы в космос, Земля могла бы вновь стать похожей на Марс, только теперь уже холодный и безжизненный. Жесткое солнечное излучение ультрафиолетового и рентгеновского диапазона выжгло бы живые организмы. Поверхность покрылась бы бесконечными кратерами от постоянной метеорной бомбардировки из межпланетного пространства. Планета потеряла бы жидкую воду. Температура на поверхности ночью опустилась бы на десятки или сотни градусов мороза, а днем столько же тепла. Одним словом, без тонкого газового слоя, толщина которого на три порядка меньше диаметра планеты, Земля стала бы неприветливым каменистым миром, совершенно непригодным для жизни на поверхности.
Атмосфера.
Атмосферой принято именовать газовую смесь, обволакивающую поверхность планеты. Нижний слой, содержащий более 80% массы всего воздуха, называют тропосферой. В этом слое находится около 90% всей атмосферной влаги. Между тем водяной пар — самый эффективный парниковый газ. Он намного более значим, нежели углекислый газ или метан. Принято считать, что температура в тропосфере линейно уменьшается с высотой со скоростью 0,65℃ на 100 метров. В этом слое особенно ярко выражен конвективный перенос воздуха, существуют сильные турбулентные вихри, возникают циклоны и антициклоны, образуются облака.
Вертикальный профиль температуры атмосферы Земли.
Высота тропосферы зависит от широты: так, в приполярье она доходит до 8–10 км над уровнем моря, в умеренных широтах — до 10–12 км, а ближе к экватору достигает 16–18 км. Верхняя граница этого слоя обуславливается переходом от плотной и непрозрачной для теплового инфракрасного излучения Земли тропосферы к тропопаузе — тонкому слою, начиная с которого атмосфера становится прозрачна для ИК-излучения. Температура воздуха в тропопаузе определяется балансом между падающим на нашу планету потоком теплового излучения Солнца и потоком тепла, испускаемого Землей, и находится в диапазоне от –50℃ до –90℃. В этом слое уже отсутствует конвекция потоков воздуха, обуславливающая сильные турбулентные вихри в тропосфере, именно поэтому гражданские самолеты чаще всего летают на высотах от 10 километров.
Заметное отклонение температуры у поверхности от температуры в тропопаузе обусловлено наличием парникового эффекта. То есть при всех современных страхах человечества, относящихся к усилению парникового эффекта, не будь его, на Земле было бы весьма свежо.
Выше тропопаузы находится наибольшая концентрация озона, присутствие которого в земной атмосфере связано с наличием биогенного кислорода, выделяемого в ходе фотосинтеза растениями. Озон очень эффективно поглощает ультрафиолетовое излучение Солнца, что обеспечивает защиту живых организмов от опасного для них жесткого диапазона солнечной радиации. Такое эффективное поглощение приводит также и к разогреву атмосферы на этих высотах. Слой, в котором температура начинает расти и достигает локального максимума около 0℃ на высоте 40 километров, называется стратосферой. На ее долю приходится почти 20% всей массы атмосферы. Примерно до 55 километров температура не меняется. Эту область постоянной температуры называют стратопаузой.
Выше этой отметки температура вновь начинает падать с высотой. Так происходит до уровня 80–90 километров над уровнем моря. В этом слое — мезосфере — происходят сложные фотохимические процессы с участием солнечного излучения. Несмотря на большую протяженность, масса мезосферы не превышает 0,3% всей атмосферы. До высоты 100 километров газовая смесь атмосферы достаточно хорошо перемешана и относительные концентрации газов мало меняются. В более высоких слоях в распределении газов по высоте начинает играть все большую роль их молекулярная масса. Присутствие тяжелых газов становится все менее значимым, в то время как протяженность распространения водорода — сотни и даже тысячи километров над поверхностью Земли.
Следующий слой — термосфера — доходит до высоты около 800 километров, хотя составляет лишь 0,05% всей атмосферной массы. До 200–300 километров температура достаточно быстро растет из-за поглощения молекулами газа высокоэнергетического ультрафиолетового и рентгеновского солнечного излучения. Однако если выключить обогрев на Международной космической станции, высота орбиты которой около 300–400 км, космонавты очень скоро вспомнят долгие зимние вечера без центрального отопления. Дело в том, что атмосфера на этих высотах настолько разрежена, что теплообмена с горячими молекулами и ионами газа практически не происходит. Поэтому тем, кто окажется в очень горячей термосфере Земли, жарко на самом деле точно не будет.
Еще выше расположена экзосфера, определяемая увеличением длины свободного пробега молекул до десятков километров. В этом слое верхней атмосферы горячие и быстрые молекулы могут развивать скорость большую, чем вторая космическая скорость для Земли, а значит, покидать гравитационное поле нашей планеты, отправляясь в космическое пространство. На высотах 2000–3500 километров экзосфера переходит в ближнее космическое пространство.
Помимо разогрева, взаимодействие газа с жестким солнечным излучением приводит к его ионизации. Ионизация азота и кислорода при отсутствии возможности релаксации посредством столкновения с другими молекулами приводит к излучению возбужденных атомов и молекул в красном, зеленом, фиолетовом и ближнем ультрафиолетовом диапазонах спектра. Это красивейшее явление называют полярным сиянием.
Волнения тропосферы.
В тропосфере существуют колебания и волны, которые играют огромную роль в ее поведении. Если в сумерках взглянуть на облачное небо, можно увидеть параллельные борозды облаков — это и есть одно из проявлений атмосферных гравитационных волн. Они имеют ту же природу, что и волны на поверхности воды. Заметное отличие заключается в том, что у воды всегда есть свободная поверхность, на которой и образуются волны, а в случае атмосферы волны формируются внутри среды. Только почему их можно заметить лишь утром или вечером, но невозможно обнаружить в солнечный полдень?
Солнце разогревает поверхность планеты, это приводит к возникновению активной конвекции водяного пара вверх. Пар быстро охлаждается с высотой, конденсируется и образует привычные кучевые облака. Именно природой этого процесса обусловливается их форма. Поскольку нижняя граница облаков определяется переходом пара через точку росы, лежащую на некоторой высоте, после которой пар резко конденсируется, эта граница оказывается довольно плоской. В то же время верхняя поверхность достаточно клубистая, что отражает природу турбулентного вихря, поднимающего пар наверх.
Турбулентность может присутствовать даже в тропопаузе. Это коварное явление известно в авиации как «турбулентность ясного неба». В области кучевой облачности пилоты всегда ожидают сильной тряски, но временами она случается и в безоблачном небе. Дело в том, что присутствие турбулентности может быть обусловлено не только разницей температур между двумя областями, но и, например, резким изменением с высотой горизонтальной скорости движения воздушных масс.
Если рассмотреть геометрию атмосферы, можно легко заметить, что при высоте порядка десятков километров ее горизонтальная протяженность составляет десятки тысяч километров. Такая большая разница между горизонтальным и вертикальным масштабами, а также высокий темп изменения свойств вдоль вертикальной координаты приводят к тому, что атмосферу нельзя описывать как изотропную, то есть равномерную в своем объеме среду. Более того, если рассматривать циркуляцию атмосферы в целом, оказывается, что ее можно описывать как несжимаемую жидкость.
Почему дует ветер?
Казалось бы, все процессы в природе подвержены диссипативному затуханию, и за миллиарды лет своего существования атмосфера должна была уже прийти в состояние равновесия. Однако это не совсем так. Атмосфера Земли сплюснута у полюсов и растянута вблизи экватора, что связано с ее неоднородным прогревом солнечным излучением. То есть равное давление на полюсе будет достигаться сильно ниже по высоте, чем на экваторе, — под действием силы тяжести формируется поток воздуха от тропиков к полюсам. Вблизи поверхности планеты будет формироваться противоток воздушных масс.
Глобальная циркуляция атмосферы.
Оказавшись вблизи полюса и спустившись на небольшую высоту над поверхностью, частицы воздуха, сохраняя свой импульс, начинают обгонять вращение планеты, линейная скорость которого в приполярье сильно меньше, чем в тропических широтах. Таким образом формируется струйное течение вдоль широты. При движении частицы к экватору линейная скорость вращения поверхности увеличивается, и частица начинает отставать от вращения планеты — возникает постоянный ветер, который в северном полушарии дует с северо-востока, в южном — с юго-восточного направления. Такой постоянный ветер называют пассатом.
В середине XVIII века английский путешественник Джон Хэдли, изучая северную Африку, обратил внимание на всегда дующий в одну сторону ветер — пассат — и смог предугадать причины его формирования. Ячейку циркуляции атмосферы в тропических широтах называют в его честь ячейкой Хэдли.
В средних широтах циркуляция атмосферы происходит иначе. Здесь работает удивительный в своей противоречивости механизм движения воздушных масс. Кажется разумным, чтобы из области с высоким давлением поток воздуха перемещался в область с низким давлением. Однако природа циклонов и антициклонов, распространенных в умеренных широтах, эту логику разрушает. Здесь ветер образует концентрические поверхности вокруг центров областей высокого и низкого давления. Эта странность связана также с природой атмосферных гравитационных волн, связанных с быстрым вращением планеты вокруг своей оси.
В центре циклона находится область низкого давления, вихрь воздушных масс вращается в ту же сторону, что и планета. В циклоне восходящий поток воздуха, который обусловливает низкое давление в его центре, приводит к охлаждению и конденсации водяного пара, поэтому он всегда приносит с собой облачность и осадки. Внутри антициклона, напротив, воздух движется вниз, нагреваясь. Та влага, что находится в этом потоке, испаряется. Поэтому в случае антициклона погода всегда ясная, а ветер дует в сторону, противоположную направлению вращения планеты.
Климат идет вразнос?
В течение последних 30 лет большие усилия ученых оказались направлены на то, чтобы понять, что происходит с климатом. Было обнаружено, что за прошедшее столетие средняя годовая температура на планете выросла на 0,74℃. В связи с этим ускоряется таяние приполярных ледников и повышается уровень Мирового океана. Последние десять лет очень активно развивалось моделирование процессов, протекающих в атмосфере Земли, поведения климата, — изменение среднегодовой температуры в этих моделях достаточно точно совпадает с реально наблюдаемым трендом. Это позволяет строить прогнозы относительно дальнейшего изменения климата в обозримом будущем.
В отличие от океана, атмосфера довольно плохо помнит свои предыдущие тепловые состояния, поскольку тепловая инертность атмосферы много меньше. Поэтому точный прогноз погоды невозможен на длительный срок вперед. Математические уравнения, описывающие поведение атмосферы, перестают корректно работать на интервалах времени, больших, чем одна-две недели. Так что не стоит сильно полагаться на долгосрочный прогноз погоды: скорее всего в нем будут использованы усредненные показания нужного периода за последние несколько лет, которые никак не могут предсказать какие-либо неожиданные отклонения.
Поскольку океан греется, в нем возникают долгоживущие аномалии температуры поверхности, которые в свою очередь влияют на атмосферу. Это может приводить к перестройке атмосферной циркуляции, изменению направления движения и возникновению новых циклонов. Так, взаимодействие тепловых аномалий поверхности Атлантического океана с атмосферой привело к тому, что традиционно континентальный климат в Северной Европе меняется: зимы с каждым десятилетием становятся теплее.
Прогноз экстремальных температур в Европе
Все чаще случаются длительные непривычно жаркие периоды летом, все чаще мы слышим штормовые предупреждения весной. Все чаще можно услышать гипотезы о том, что в ближайшие полвека Южная Европа и Северная Африка из плодородных регионов превратятся в высушенные пустыни, в то время как российский север станет пригодным для земледелия. Как бы то ни было, человеку стоит уделять вдесятеро большее внимание изучению атмосферы и идущим климатическим изменениям, чтобы возможное новое Великое переселение народов не оказалось для всех полной неожиданностью.
Источник — Научно-популярный журнал «За науку».
Следите за погодой и климатом вместе с нами!
С Уважением, Маглипогода!
Информация, которая размещается на сайте, не считается официальной.
На всех страницах функционирует система уведомления правописания. Обнаружив ошибку или неточность в тексте, выделите ее и нажмите Ctrl+Enter.
Присоединяйтесь к нам через социальные сети и подписывайтесь на рассылку по электронной почте.
Поддержите сайт!
0 0 голоса
Рейтинг
Атмосфера Земли
Географическая оболочка
Атмосфера (от греческого atmos — пар и sphaira – шар) – газовая оболочка Земли, которая удерживается её притяжением и вращается вместе с планетой. Физическое состояние атмосферы определяется климатом, а основными параметрами атмосферы являются состав, плотность, давление и температура воздуха. Плотность воздуха и атмосферное давление с высотой уменьшаются. Атмосферу разделяют на несколько слоёв в зависимости от изменения температуры: тропосферу, стратосферу, мезосферу, термосферу, экзосферу. Между этими слоями расположены переходные области, которые называются тропопауза, стратопауза и так далее.
Тропосфера — нижний слой атмосферы, высотой в полярных областях располагается до высоты 8-10 км, в умеренных широтах до 10-12 км, а на экваторе – 16-18 км. В тропосфере находится около 80% всей массы атмосферы и почти все водяные пары. Плотность воздуха здесь наибольшая. При подъёме на каждые 100 м температура в тропосфере понижается в среднем на 0,65° Верхний слой тропосферы, который является промежуточным между ней и стратосферой, называют тропопаузой.
Стратосфера — второй слой атмосферы, который располагается на высоте от 11 до 50 км. Здесь температура с высотой, напротив, повышается. На границе с тропосферой она достигает примерно -56°С, а к высоте около 50 км поднимается до 0°С. Область между стратосферой и мезосферой называется стратопаузой. В стратосфере располагается слой «озоновый слой», определяющий верхний предел биосферы. Озоновый слой также является своеобразным щитом, защищающим живые организмы от губительного ультрафиолетового излучения Солнца. Сложные химические процессы, происходящие в этой оболочке, сопровождаются выделением световой энергии (например, северное сияние). Здесь сосредоточено около 20% массы атмосферы.
Следующим слоем атмосферы является мезосфера. Она начинается на высоте 50 км и заканчивается на высоте 80-90 км. Температура воздуха в мезосфере с высотой понижается и достигает в верхней её части -90°С. Промежуточным слоем между мезосферой и следующей за ней термосферой является мезопауза.
Термосфера или ионосфера начинается на высоте 80-90 км и заканчивается на высоте 800 км. Температура воздуха здесь достаточно быстро возрастает, достигая нескольких сот и даже тысяч градусов.
Последней частью атмосферы является экзосфера или зона рассеяния. Она располагается выше 800 км. Это пространство уже практически лишено воздуха. На высоте около 2000-3000 км экзосфера постепенно переходит в так называемый ближнекосмический вакуум, который не входит в атмосферу Земли.
Cтроение атмосферы
Атмосфера в вертикальном отношении неоднородна её разделяют на несколько концентрических оболочек: тропосферу, стратосферу, мезосферу, термосферу. Друг от друга они отделяются тонкими в 1-2 км толщиной переходными слоями – паузами: тропопаузой, стратопаузой, мезопаузой.
Тропосфера большую мощность имеет на экваторе (17 км), меньшую – на полюсах (8-10 км). С высотой температура понижается и достигает на границе со стратосферой -70°С на широте экватора и -65°С на полюсах. Давление воздуха изменяется от 760 мм рт. ст. на поверхности Земли до 210 мм на верхней границе. Содержит 80% воздуха и почти весь водяной пар.
Строение атмосферы (по С.Г. Любушкиной и др.):
1 — уровень моря; 2 — перистые облака; 3 — кучевые облака; 4 — слоистые облака; 5 — свободный аэростат; 6 — стратостат; 7 — радиозонд; 8 — перламутровые облака; 9 — отражение звуковых волн; 10 — метеорологическая ракета; 11 — серебристые облака; 12 — отражение средних радиоволн; 13 — метеориты; 14 и 15 — полярные сияния; 16 — отражение коротких волн; 17 — геофизическая ракета; 18 — искусственные спутники Земли; 19 — пилитируемые космические корабли.
Стратосфера содержит около 20% воздуха. Падение температуры в ней прекращается, а затем и начинает расти, достигая 0°С — (+10)°С на границе с мезосферой. Концентрация озона в стратосфере максимальна, особенно на высоте 22-27 км. Этот слой называют озоновым. Озоновый слой считают верхней границей биосферы.
В мезосфере температура начинает понижаться и на верхней границе падает до -90°С (самая низкая температура в атмосфере). Наблюдаются серебристые облака.
В термосфере воздух чрезвычайно разрежен. Температура с высотой растет и на высоте 100 км достигает 0°С. На высоте 200 км она достигает +500°С, 600 км – +1500°С. Это сфера разреженного ионизированного газа. Электропроводность этой сферы в 1012 раз больше, чем у поверхности Земли. Здесь наблюдаются полярные сияния, магнитные бури.
Экзосфера – это часть термосферы, где происходит рассеивание ионизированного газа в космическое пространство. Уходят из экзосферы преимущественно ионы водорода.
Нижний слой тропосферы, примыкающий к земной поверхности, называют приземным слоем. Слой от земной поверхности до высоты порядка 1000 м называют слоем трения, в котором уменьшается скорость ветра и меняется его направление. Слой трения оказывает большое влияние на общую циркуляцию атмосферы. В процессе последней тропосфера расчленяется на отдельные воздушные массы, которые более или менее длительное время сохраняют индивидуальные физические свойства (температуру, влажность, содержание влаги). Горизонтальное распространение воздушных масс измеряется тысячами километров.
Наименование и главные характеристики сфер воздушной оболочки
(по Х.Т. Погосян)
Сфера |
Высота нижней и верхней границы, км |
Характер изменения температуры с высотой |
Переходный слой |
Тропосфера |
От поверхности земли до 8-17 |
Понижение |
Тропопауза |
Стратосфера |
От 8-17 до 50-55 |
Повышение |
Стратопауза |
Мезосфера |
От 50-55 до 80 |
Понижение |
Мезопауза |
Термосфера |
От 80 до 800 |
Повышение |
Термопауза |
Экзосфера |
Выше 800 |
— |
— |
Нижний слой тропосферы, примыкающий к земной поверхности, называют приземным слоем. Слой от земной поверхности до высоты порядка 1000 м называют слоем трения, в котором уменьшается скорость ветра и меняется его направление. Слой трения оказывает большое влияние на общую циркуляцию атмосферы. В процессе последней тропосфера расчленяется на отдельные воздушные массы, которые более или менее длительное время сохраняют индивидуальные физические свойства (температуру, влажность). Горизонтальное распространение воздушных масс измеряется тысячами километров.
Еще статьи о атмосфере
Ученые вычислили средние температуры на Земле во время последнего оледенения — Наука
ТАСС, 27 августа. Палеоклиматологи выяснили, что во время последнего наступления ледников средняя температура на поверхности Земли составляла примерно 9 °С. К такому выводу исследователи пришли, изучив образцы древнего льда и отложения на стенах пещер времен оледенения. Результаты работы опубликовал научный журнал Nature.
«Наши расчеты показывают, что в то время температуры на Земле в среднем уменьшились на 6,1 °С. В контексте нынешнего глобального потепления это означает, что если в атмосфере станет вдвое больше углекислого газа, то температура на планете вырастет на 3,4 °С. Это больше предыдущих оценок, связанных с последним ледниковым максимумом, но вполне укладывается в предсказания общепринятых климатических моделей», – пишут исследователи.
Последний ледниковый период в истории Земли начался примерно 2,6 млн лет назад. Его главная особенность состоит в том, площадь оледенения и температура поверхности Земли в течение всего периода не были постоянными. Из-за резких похолоданий и потеплений ледники наступали и отступали каждые несколько десятков тысяч лет.
Последняя «оттепель» такого рода произошла примерно 13 тыс. лет назад и продолжается до сих пор, а последнее наступление ледников, так называемый ледниковый максимум, началось около 33 тыс. лет назад и достигло пика 26 тыс. лет назад. Ученые исследуют последствия этих событий в надежде понять, как долго продлится текущий теплый период и как за это время поменялся климат Земли.
Климат ледниковой эпохи
Климатологи под руководством доцента Аризонского университета (США) Джессики Тирни получили первые точные оценки того, как сильно упала средняя температура на Земле во время последнего ледникового максимума. Эти данные, как объясняют исследователи, важны для того, чтобы понимать, как меняются температуры на Земле при резких изменениях концентрации углекислого газа или площади ледового покрова, что происходило и тогда, и сейчас.
Чтобы получить подобные сведения, ученые собрали образцы отложений со стен нескольких десятков пещер, разбросанных по всему миру, а также отложения древнего льда из Гренландии и Антарктики. Проанализировав их изотопный и химический состав, палеоклиматологи выяснили, как сильно падали или повышались температуры в этих уголках Земли за последние 30 тыс. лет, и использовали их для создания модели климата планеты во время последнего ледникового максимума.
«Климатические модели предсказывают, что на высокие широты глобальное потепление будет действовать быстрее и сильнее. Особенно сильно это проявится в Арктике. Нечто похожее, но обратное по смыслу, происходило и во время последнего ледникового максимума», – объяснила Тирни.
По ее словам, тогда температура в умеренных широтах Земли упала на 3-5 °С, тогда как в приполярных регионах она уменьшилась на 14 °С. Аналогичное по силе похолодание произошло в Европе, Канаде и на севере США. Это объясняет, почему ледники в то время покрывали почти всю их территорию.
Получив эти данные, ученые просчитали то, насколько климат Земли чувствителен к резким изменениям в концентрации парниковых газов в атмосфере и площади полярных ледовых шапок. Как надеются Тирни и ее коллеги, эти уточненные данные помогут их коллегам точнее прогнозировать то, как будет меняться климат планеты в ближайшие десятилетия и столетия, и выработать оптимальные методики борьбы с глобальным потеплением.
Каков состав и температура атмосферы Земли?
Обновлено 1 марта 2020 г.
Автор: Rosann Kozlowski
Проверено: Lana Bandoim, B.S.
Атмосфера Земли состоит из пяти различных слоев. Эти слои защищают Землю от ультрафиолетового излучения, сохраняют обитаемость поверхности планеты за счет парникового эффекта и обеспечивают кислород, необходимый для дыхания.
Атмосфера Земли: общее изображение
Орбита Земли вокруг Солнца удерживает планету на идеальном расстоянии, где температура поддерживает жидкую воду на поверхности для поддержания жизни.
Температура атмосферы:
Диапазон температур Земли по Фаренгейту составляет от 2700 градусов по Фаренгейту (1500 градусов по Цельсию) в верхних слоях атмосферы до средней глобальной температуры около 59 градусов по Фаренгейту (15 градусов Цельсия) у поверхности.
Состав атмосферы:
В состав атмосферы входят в основном азот и кислород, хотя она начинает истончаться в пределах 10 миль (16 километров) от поверхности Земли.
Тропосфера
Слой тропосферы простирается от поверхности Земли на высоту от 4 до 12 миль (от 6 до 20 километров). Это зависит от широты. На экваторе он может достигать 12 миль (20 километров), а на полюсах — около 4 миль (6 километров).
Почти 75 процентов атмосферы находится в тропосфере. Состав содержит в основном азот и кислород:
- Азот, 78,08 процентов,
- Кислород, 20.95 процентов
- Вода, от 0 до 4 процентов (водяной пар имеет самую высокую концентрацию около экватора и самую низкую в пустынях и полярных регионах)
- Аргон, 0,93 процента
- Углекислый газ, 0,04 процента
- След количества неона, гелия, метана, водорода, оксидов азота и озона
- Твердые частицы, такие как пыль, вулканический пепел
Около поверхности Земли средняя глобальная температура составляет 59 градусов по Фаренгейту (15 градусов по Цельсию).На самой верхней границе тропосферы воздух достигает почти отрицательных 76 градусов по Фаренгейту (отрицательных 60 градусов по Цельсию).
Стратосфера
Стратосфера начинается на самом верхнем уровне тропосферы и простирается до 50 километров над поверхностью Земли.
В стратосфере содержится от 85 до 90 процентов атмосферного озона, созданного в результате фотолиза, разложения кислорода под действием солнечной радиации. Этот слой озона защищает живые существа на Земле от вредного ультрафиолетового излучения Солнца.Состав стратосферы:
- содержит газы из тропосферы, но их меньше
- присутствуют другие газы: закись азота, метан и хлорфторуглероды, которые поступают из тропосферы
- очень мало водяного пара
- извержения вулканов на Земле выделяют сульфидные соединения, галогенные газы, такие как хлористый водород и фторид, и частицы неорганических силикатных и сульфатных соединений
Температура в стратосфере колеблется от минус 60 градусов по Фаренгейту (минус 51 градус Цельсия) на границе тропосферы до минус 5 градусов по Фаренгейту (минус 15 градусов Цельсия). ) на вершине.Повышение температуры происходит из-за озонового слоя, который поглощает ультрафиолетовое излучение солнечного излучения.
Мезосфера
Мезосфера простирается от границы стратосферы до 53 миль (85 километров) над поверхностью Земли. Он содержит самые низкие температуры в атмосфере Земли.
В состав мезосферы входят все более разреженные газы из слоев тропосферы и стратосферы. Кроме того, метеоры испаряются в мезосфере, повышая концентрацию ионов железа и других металлов.
Температура колеблется от отрицательных 5 градусов по Фаренгейту (отрицательных 15 градусов по Цельсию) на границе стратосферы до отрицательных 184 градусов по Фаренгейту (отрицательных 120 градусов по Цельсию) на верхней границе.
Термосфера
От вершины мезосферы термосфера простирается на расстояние от 311 до 621 миль (от 500 до 1000 километров) над поверхностью Земли.
Только следовые количества атмосферы (из тропосферы) могут быть обнаружены в слое термосферы.Любые углекислые газы, которые способствуют нагреванию тропосферы, вызывают охлаждение в термосфере, поскольку они излучают тепло обратно в космос.
Заряженные частицы из космоса, которые сталкиваются с атомами, создавая северное сияние (северное сияние) и аврора австралис (южное сияние), находятся в слое термосферы.
Температура колеблется от отрицательных 184 градусов по Фаренгейту на верхней границе мезосферы до 3600 градусов по Фаренгейту (2000 градусов по Цельсию) у верхней границы по мере поглощения ультрафиолетового и рентгеновского излучения Солнца.
Экзосфера
Экзосфера не имеет четких границ, поскольку постепенно растворяется в космическом пространстве. Некоторые ученые помещают его на высоте 62 000 миль (100 000 километров) над Землей.
Состав экзосферы разреженный, поскольку атомы и молекулы медленно рассеиваются в космосе. Внутри этого слоя атомы водорода рассеивают ультрафиолетовое излучение, а отдельные молекулы газа либо притягиваются к Земле гравитационными силами, либо улетают в космос.
Температура экзосферы:
Диапазон температур экзосферы может достигать 2700 градусов по Фаренгейту (1500 градусов по Цельсию) в самых верхних слоях атмосферы, поскольку разреженный воздух пропускает мало тепла.
Атмосфера Земли: состав, климат и погода
Земля — единственная планета в солнечной системе с атмосферой, способной поддерживать жизнь. Покров из газов не только содержит воздух, которым мы дышим, но и защищает нас от тепловых и радиационных лучей, исходящих от солнца. Он согревает планету днем и охлаждает ее ночью.
Атмосфера Земли имеет толщину около 300 миль (480 километров), но большая ее часть находится в пределах 10 миль (16 км) от поверхности. Давление воздуха уменьшается с высотой.На уровне моря атмосферное давление составляет около 14,7 фунтов на квадратный дюйм (1 килограмм на квадратный сантиметр). На высоте 10 000 футов (3 км) давление воздуха составляет 10 фунтов на квадратный дюйм (0,7 кг на квадратный см). Также меньше кислорода для дыхания.
Связано: Насколько велика Земля?
Состав воздуха
По данным НАСА, газы в атмосфере Земли включают:
- Азот — 78 процентов
- Кислород — 21 процент
- Аргон — 0.93 процента
- Двуокись углерода — 0,04 процента
- Следы неона, гелия, метана, криптона и водорода, а также водяного пара
Слои атмосферы
Атмосфера Земли разделена на пять основных слоев: экзосфера, термосфера , мезосфера, стратосфера и тропосфера. Атмосфера становится разреженной в каждом более высоком слое, пока газы не рассеются в космосе. Между атмосферой и космосом нет четкой границы, но воображаемая линия на расстоянии около 62 миль (100 километров) от поверхности, называемая линией Кармана, обычно проходит там, где, по словам ученых, атмосфера встречается с космическим пространством.
Тропосфера — слой, ближайший к поверхности Земли. Его толщина составляет от 4 до 12 миль (от 7 до 20 км), и он содержит половину атмосферы Земли. Воздух у земли теплее, а выше становится холоднее. Практически весь водяной пар и пыль в атмосфере находятся в этом слое, и именно поэтому здесь находятся облака.
Стратосфера — второй слой. Он начинается над тропосферой и заканчивается на высоте около 50 км над землей. Здесь много озона, который нагревает атмосферу, а также поглощает вредное солнечное излучение.Воздух здесь очень сухой, и он примерно в тысячу раз тоньше, чем на уровне моря. Из-за этого здесь летают реактивные самолеты и метеозонд.
Мезосфера начинается на высоте 31 мили (50 км) и простирается до 53 миль (85 км) в высоту. Верхняя часть мезосферы, называемая мезопаузой, является самой холодной частью атмосферы Земли со средней температурой около минус 130 градусов по Фаренгейту (минус 90 градусов по Цельсию). Этот слой сложно изучать. Самолеты и воздушные шары не поднимаются достаточно высоко, а орбиты спутников и космических кораблей — слишком высоко.Ученые знают, что в этом слое горят метеоры.
Термосфера простирается от примерно 56 миль (90 км) до 310–620 миль (от 500 до 1000 км). На этой высоте температура может достигать 2700 градусов по Фаренгейту (1500 градусов по Цельсию). Термосфера считается частью атмосферы Земли, но плотность воздуха настолько мала, что большую часть этого слоя обычно называют космическим пространством. Фактически, это то место, где летали космические шаттлы и где на орбите Земли вращается Международная космическая станция.Это также слой, где происходят полярные сияния. Заряженные частицы из космоса сталкиваются с атомами и молекулами в термосфере, переводя их в более высокие энергетические состояния. Атомы выделяют эту избыточную энергию, испуская фотоны света, которые мы видим как красочные северное сияние и австралийское сияние.
Экзосфера , самый верхний слой, чрезвычайно тонкий и является местом, где атмосфера сливается с космическим пространством. Он состоит из очень широко рассеянных частиц водорода и гелия.
Климат и погода
Земля способна поддерживать большое количество разнообразных живых существ из-за своего разнообразного регионального климата, который варьируется от экстремального холода на полюсах до тропической жары на экваторе. Региональный климат часто описывают как среднюю погоду на протяжении более 30 лет. Климат региона часто описывается, например, как солнечный, ветреный, сухой или влажный. Они также могут описывать погоду в определенном месте, но, хотя погода может измениться всего за несколько часов, климат меняется в течение более длительного периода времени.
Глобальный климат Земли представляет собой средний региональный климат. На протяжении всей истории глобальный климат охлаждался и согревался. Сегодня мы наблюдаем необычно быстрое потепление. Научный консенсус состоит в том, что парниковые газы, количество которых увеличивается из-за деятельности человека, удерживают тепло в атмосфере.
Земля, Венера и Марс
Чтобы лучше понять формирование и состав Земли, ученые иногда сравнивают нашу планету с Венерой и Марсом. Все три планеты имеют каменистую природу и являются частью внутренней солнечной системы, что означает, что они находятся между Солнцем и поясом астероидов.
Венера почти полностью состоит из углекислого газа со следами азота и серной кислоты. Однако эта планета также имеет на своей поверхности неконтролируемый парниковый эффект. Космический корабль должен быть сильно усилен, чтобы выдержать сокрушительное давление (в 90 раз тяжелее Земли) и температуру, подобную печной (872 по Фаренгейту или 467 по Цельсию), на его поверхности. Облака также настолько толстые, что поверхность невидима в видимом свете. Поскольку на поверхность выходит немного солнца, это означает, что на Венере нет значительных сезонных изменений температуры.
Марс также имеет атмосферу, в основном двуокись углерода, со следами азота, аргона, кислорода, окиси углерода и некоторых других газов. На этой планете атмосфера примерно в 100 раз тоньше земной — ситуация сильно отличается от древнего прошлого, когда геологические данные показывают, что вода текла по поверхности более 4,5 миллиардов лет назад. Ученые предполагают, что атмосфера Марса могла со временем истончиться, либо потому, что Солнце унесло более легкие молекулы в атмосферу, либо потому, что огромное столкновение астероида или кометы катастрофически разрушило атмосферу.Марс подвергается колебаниям температуры в зависимости от того, сколько солнечного света достигает поверхности, что также влияет на его полярные ледяные шапки (еще одно большое влияние на атмосферу).
Ученые регулярно сравнивают маленькие каменистые экзопланеты с Землей, Венерой и Марсом, чтобы лучше понять их их обитаемость. Общепринятое определение «обитаемости» состоит в том, что планета находится достаточно близко к звезде, чтобы на ее поверхности могла существовать жидкая вода. Слишком далеко, и вода становится ледяной; слишком близко, и вода испарится.Однако обитаемость зависит не только от расстояния между звездой и планетой, но и от атмосферы планеты, изменчивости звезды и других факторов.
Дополнительный отчет предоставила Элизабет Хауэлл, участник Space.com.
слоев атмосферы Земли | UCAR Center for Science Education
Слои атмосферы: тропосфера, стратосфера, мезосфера и термосфера.
Предоставлено: Рэнди Рассел, UCAR
Атмосфера Земли состоит из нескольких слоев, каждый из которых имеет свои особенности.Двигаясь вверх от уровня земли, эти слои называют тропосферой, стратосферой, мезосферой, термосферой и экзосферой. Экзосфера постепенно уходит в область межпланетного пространства.
Тропосфера — самый нижний слой нашей атмосферы. Начиная с уровня земли, он простирается вверх примерно на 10 км (6,2 мили или около 33000 футов) над уровнем моря. Мы, люди, живем в тропосфере, и почти вся погода бывает в этом нижнем слое. Здесь появляется больше всего облаков, в основном потому, что 99% водяного пара в атмосфере находится в тропосфере.По мере того, как вы поднимаетесь выше в тропосфере, давление воздуха падает, а температура становится холоднее.
Следующий слой называется стратосферой . Стратосфера простирается от верха тропосферы примерно до 50 км (31 миля) над землей. Печально известный озоновый слой находится в стратосфере. Молекулы озона в этом слое поглощают высокоэнергетический ультрафиолетовый (УФ) свет Солнца, преобразовывая УФ-энергию в тепло. В отличие от тропосферы, стратосфера действительно становится теплее, чем выше вы поднимаетесь! Эта тенденция повышения температуры с высотой означает, что воздух в стратосфере лишен турбулентности и восходящих потоков тропосферы под ней.Коммерческие пассажирские самолеты летают в нижних слоях стратосферы, отчасти потому, что этот менее турбулентный слой обеспечивает более плавный полет. Струйное течение течет вблизи границы между тропосферой и стратосферой.
Над стратосферой находится мезосфера . Он простирается вверх на высоту около 85 км (53 мили) над нашей планетой. Большинство метеоров сгорает в мезосфере. В отличие от стратосферы, температура снова становится холоднее по мере того, как вы поднимаетесь в мезосфере. Самые низкие температуры в атмосфере Земли, около -90 ° C (-130 ° F), находятся в верхней части этого слоя.Воздух в мезосфере слишком разрежен, чтобы дышать; давление воздуха в нижней части слоя значительно ниже 1% давления на уровне моря и продолжает падать по мере того, как вы поднимаетесь выше.
Слой очень редкого воздуха над мезосферой называется термосферой . Рентгеновские лучи высокой энергии и ультрафиолетовое излучение Солнца поглощаются термосферой, повышая ее температуру до сотен, а иногда и тысяч градусов. Однако воздух в этом слое настолько разрежен, что нам кажется ледяным холодом! Во многих отношениях термосфера больше похожа на космическое пространство, чем на часть атмосферы.Многие спутники фактически вращаются вокруг Земли в пределах термосферы! Колебания количества энергии, исходящей от Солнца, оказывают сильное влияние как на высоту верхней части этого слоя, так и на температуру внутри него. Из-за этого верхняя часть термосферы может находиться на высоте от 500 до 1000 км (от 311 до 621 миль) над землей. Температура в верхней термосфере может колебаться от 500 ° C (932 ° F) до 2000 ° C (3632 ° F) или выше. Северное сияние, северное сияние и южное сияние происходят в термосфере.
Хотя некоторые эксперты считают термосферу самым верхним слоем нашей атмосферы, другие считают экзосферу фактической «последней границей» газовой оболочки Земли. Как вы можете себе представить, «воздух» в экзосфере очень, очень, очень тонкий, что делает этот слой даже более космическим, чем термосфера. Фактически, воздух в экзосфере постоянно — хотя и очень постепенно — «просачивается» из атмосферы Земли в космическое пространство. Нет четкой верхней границы, где экзосфера окончательно уходит в космос.Различные определения помещают верхнюю часть экзосферы где-то между 100 000 км (62 000 миль) и 190 000 км (120 000 миль) над поверхностью Земли. Последнее значение примерно на полпути до Луны!
Ионосфера не является отдельным слоем, как другие, упомянутые выше. Вместо этого ионосфера представляет собой серию областей в частях мезосферы и термосферы, где высокоэнергетическое излучение Солнца выбивает электроны из их родительских атомов и молекул.Образованные таким образом электрически заряженные атомы и молекулы называются ионами, что дало ионосфере название и наделяло эту область некоторыми особыми свойствами.
Что такое атмосфера? | UCAR Center for Science Education
Слоистая структура атмосферы Земли видна на этом закате с Международной космической станции.
Предоставлено: Лаборатория науки и анализа изображений, Космический центр имени Джонсона НАСА
Атмосфера представляет собой смесь газов, окружающих планету.На Земле атмосфера помогает сделать жизнь возможной. Помимо того, что дает нам чем дышать, он защищает нас от большей части вредного ультрафиолетового (УФ) излучения, исходящего от Солнца, нагревает поверхность нашей планеты примерно на 33 ° C (59 ° F) за счет парникового эффекта и в значительной степени предотвращает резкие перепады дневных и ночных температур. Другие планеты в нашей солнечной системе также имеют атмосферу, но ни одна из них не имеет такого же соотношения газов и слоистой структуры, как атмосфера Земли.
Газы в атмосфере Земли
Азот и кислород являются наиболее распространенными; сухой воздух состоит примерно на 78% из азота (N 2 ) и примерно на 21% из кислорода (O 2 ). Аргон, диоксид углерода (CO 2 ) и многие другие газы также присутствуют в гораздо меньших количествах; каждый составляет менее 1% газовой смеси атмосферы. В атмосферу также входит водяной пар. Количество присутствующего водяного пара сильно различается, но в среднем составляет около 1%. Есть также много мелких частиц — твердых и жидких — «плавающих» в атмосфере.Эти частицы, которые ученые называют «аэрозолями», включают пыль, споры и пыльцу, соль из морских брызг, вулканический пепел, дым и многое другое.
Слои атмосферы Земли
Атмосфера становится тоньше (менее плотной и более низкой по давлению) по мере того, как человек движется вверх от поверхности Земли. Он постепенно уступает место космическому вакууму. Точного «верха» атмосферы нет. На высотах от 100 до 120 км (62-75 миль) воздух становится настолько разреженным, что для многих целей этот диапазон высот можно рассматривать как границу между атмосферой и космосом.Однако есть очень тонкие, но измеримые следы атмосферных газов на сотни километров над поверхностью Земли.
В атмосфере Земли есть несколько различных регионов или слоев. У каждого есть характерные температуры, давления и явления. Мы живем в тропосфере, самом нижнем слое, где находится больше всего облаков и где бывает почти любая погода. Некоторые реактивные самолеты летают в следующем более высоком слое, стратосфере, которая содержит реактивные течения и озоновый слой. В мезосфере температуры достигают самых низких значений, потому что там почти нет молекул воздуха, поглощающих тепловую энергию.Небо в мезосфере также меняется с синего на черное, потому что там так мало молекул, от которых свет может преломляться. А дальше от поверхности у нас есть термосфера, которая является самым широким слоем атмосферы и поглощает большую часть вредного излучения, которое достигает Земли от Солнца. Экзосфера представляет собой переход от атмосферы Земли к космосу.
Планетарные атмосферы
Земля — не единственный мир, в котором есть атмосфера. Все планеты — и даже несколько лун — в нашей солнечной системе имеют атмосферы.В некоторых бывают тучи, ветер, дождь и сильные штормы. В последнее время ученые также начали получать проблески атмосфер планет в других солнечных системах.
Каждая из планет нашей солнечной системы имеет уникальную структуру атмосферы. Атмосфера Меркурия чрезвычайно тонкая и мало чем отличается от космического вакуума. Все четыре планеты-гиганты в нашей солнечной системе — Юпитер, Сатурн, Уран и Нептун — имеют очень толстую и глубокую атмосферу. Более мелкие каменистые планеты — Земля, Венера и Марс — имеют гораздо более тонкую атмосферу, парящую над их твердой поверхностью.Атмосфера на лунах в нашей солнечной системе обычно довольно тонкая. Спутник Сатурна Титан является исключением — давление воздуха у поверхности Титана выше, чем на Земле! Из пяти официально признанных карликовых планет Плутон имеет тонкую сезонную атмосферу, содержащую азот, метан и окись углерода, а Церера может иметь чрезвычайно тонкую атмосферу водяного пара. Но только атмосфера Земли имеет слоистую структуру, которая позволяет достаточному количеству световой энергии проникать и удерживаться для тепла, но также защищает нас от слишком большого количества вредного излучения.Этот важный баланс необходим для поддержания жизни на Земле.
атмосферных слоев | Науки о Земле
Задачи урока
- Перечислите основные слои атмосферы и их температуры.
- Обсудите, почему в тропосфере бывает вся погода.
- Обсудите, как озоновый слой защищает поверхность от вредного излучения.
Словарь
- Аврора
- экзосфера
- инверсия
- ионосфера
- магнитосфера
- мезосфера
- озоновый слой
- солнечный ветер
- стратосфера
- температурный градиент
- термосфера
- тропосфера
Введение
Атмосфера слоистая, что соответствует тому, как температура атмосферы изменяется с высотой.Понимая, как температура изменяется с высотой, мы можем многое узнать о том, как устроена атмосфера. В то время как погода имеет место в более низкой атмосфере, интересные вещи, такие как красивое полярное сияние, происходят выше в атмосфере.
Температура воздуха
Бумаги, удерживаемые восходящими потоками воздуха над радиатором, демонстрируют важный принцип, согласно которому теплый воздух поднимается вверх.
Почему теплый воздух поднимается вверх (, рис. выше)? Молекулы газа могут свободно перемещаться, и если они не удерживаются, как в атмосфере, они могут занимать больше или меньше места.
- Когда молекулы газа холодные, они медлительны и не занимают столько места. При том же количестве молекул в меньшем пространстве и плотность воздуха, и давление выше.
- Когда молекулы газа теплые, они энергично движутся и занимают больше места. Плотность и давление воздуха ниже.
Более теплый и легкий воздух обладает большей плавучестью, чем более прохладный воздух над ним, поэтому он поднимается вверх. Затем более холодный воздух опускается вниз, потому что он плотнее, чем воздух под ним.Это конвекция, которая была описана в главе «Тектоника плит».
Самым разительным свойством, изменяющимся с высотой, является температура воздуха. В отличие от изменений давления и плотности, которые уменьшаются с высотой, изменения температуры воздуха нерегулярны. Изменение температуры с расстоянием называется температурным градиентом .
Атмосфера делится на слои в зависимости от того, как температура в этом слое изменяется с высотой, градиента температуры слоя ( Рис. ниже).Температурный градиент каждого слоя разный. В одних слоях температура увеличивается с высотой, а в других — уменьшается. Температурный градиент в каждом слое определяется источником тепла слоя ( Рис. ниже).
Четыре основных слоя атмосферы имеют разные градиенты температуры, создавая тепловую структуру атмосферы.
Слои атмосферы показаны разными цветами на этом изображении, полученном с Международной космической станции.
Большинство важных процессов в атмосфере происходят в двух нижних слоях: тропосфере и стратосфере.
Тропосфера
Температура тропосферы самая высокая у поверхности Земли и уменьшается с высотой. В среднем градиент температуры тропосферы составляет 6,5 ° C на 1000 м (3,6 ° F на 1000 футов) высоты. Что является источником тепла для тропосферы?
Поверхность Земли является основным источником тепла для тропосферы, хотя почти все это тепло исходит от Солнца.Скалы, почва и вода на Земле поглощают солнечный свет и излучают его обратно в атмосферу в виде тепла. Температура также выше у поверхности из-за большей плотности газов. Чем выше сила тяжести, тем выше температура.
Обратите внимание, что в тропосфере более теплый воздух находится ниже более холодного. Как вы думаете, к чему это приведет? Это состояние нестабильно. Теплый воздух у поверхности поднимается вверх, а холодный воздух выше в тропосфере опускается. Итак, воздух в тропосфере сильно перемешивается.Это смешивание приводит к изменению температурного градиента во времени и в месте. Подъем и опускание воздуха в тропосфере означает, что вся погода на планете происходит в тропосфере.
Иногда наблюдается инверсия температуры , температура воздуха в тропосфере увеличивается с высотой, и теплый воздух располагается поверх холодного. Инверсии очень стабильны и могут длиться несколько дней или даже недель. Форма обращения:
- Над сушей ночью или зимой, когда земля холодная.Холодная земля охлаждает воздух, который находится над ней, делая этот нижний слой воздуха более плотным, чем воздух над ним.
- Рядом с побережьем, где холодная морская вода охлаждает воздух над ней. Когда этот более плотный воздух движется вглубь суши, он скользит под более теплым воздухом над землей.
Поскольку температурные инверсии стабильны, они часто улавливают загрязнители и создают нездоровые условия воздуха в городах ( Рисунок ниже).
Дым делает видимую инверсию температуры.Дым задерживается в холодном плотном воздухе, который находится под шапкой более теплого воздуха.
В верхней части тропосферы находится тонкий слой, температура в котором не меняется с высотой. Это означает, что более холодный и плотный воздух тропосферы задерживается под более теплым и менее плотным воздухом стратосферы. Воздух из тропосферы и стратосферы редко смешивается.
На этом видео показан научный эксперимент, который ясно показывает, как температурная инверсия улавливает воздух вместе с любыми содержащимися в нем загрязняющими веществами у земли. Это видео (5c) : http: // www.youtube.com/watch?v=LPvn9qhVFbM (2:50).
Стратосфера
Пепел и газ от крупного извержения вулкана могут прорваться в стратосферу , слой над тропосферой. Попав в стратосферу, он остается там в течение многих лет, потому что между двумя слоями очень мало перемешивания. Пилоты любят летать в нижних слоях стратосферы, потому что там нет турбулентности воздуха.
В стратосфере температура увеличивается с высотой.Что является источником тепла для стратосферы? Непосредственным источником тепла для стратосферы является Солнце. Воздух в стратосфере стабилен, потому что более теплый и менее плотный воздух располагается над более холодным и более плотным воздухом. В результате внутри слоя происходит небольшое перемешивание воздуха.
Озоновый слой находится в стратосфере на высоте от 15 до 30 км (от 9 до 19 миль). Толщина озонового слоя меняется в зависимости от сезона и широты.
Озоновый слой чрезвычайно важен, потому что газообразный озон в стратосфере поглощает большую часть вредного ультрафиолетового (УФ) излучения Солнца.Благодаря этому озоновый слой защищает жизнь на Земле. Ультрафиолетовый свет высокой энергии проникает в клетки и повреждает ДНК, что приводит к их гибели (что мы знаем как сильный солнечный ожог). Организмы на Земле не приспособлены к сильному ультрафиолетовому излучению, которое убивает или повреждает их. Без озонового слоя, отражающего УФ-С и УФ-В излучение, самая сложная жизнь на Земле не прожила бы долго ( Рис. ниже).
Даже с озоновым слоем УФ-В излучение все же достигает поверхности Земли, особенно там, где солнечная радиация высока.
Мезосфера
Температура в мезосфере убывает с высотой. Поскольку в мезосфере мало молекул газа, способных поглощать солнечное излучение, источником тепла является стратосфера внизу. Мезосфера очень холодная, особенно в ее верхней части, около -90 ° C (-130 ° F).
Воздух в мезосфере имеет чрезвычайно низкую плотность: 99,9% массы атмосферы находится ниже мезосферы. В результате давление воздуха очень низкое ( Рисунок ниже).Человек, путешествующий по мезосфере, получит серьезные ожоги от ультрафиолета, поскольку озоновый слой, обеспечивающий защиту от ультрафиолета, находится в стратосфере ниже. Для дыхания кислорода почти не было. Что еще более странно, кровь незащищенного путешественника закипает при нормальной температуре тела из-за очень низкого давления.
Метеоры горят в мезосфере, хотя газ очень тонкий; эти горящие метеоры — падающие звезды.
Термосфера и за ее пределами
Международная космическая станция (МКС) вращается в верхней части термосферы на высоте от 320 до 380 км над Землей.
Плотность молекул в термосфере настолько мала, что одна молекула газа может пройти около 1 км, прежде чем столкнется с другой молекулой. Поскольку передается так мало энергии, воздух кажется очень холодным ( Рис. выше).
Внутри термосферы находится ионосфера . Ионосфера получила свое название от солнечного излучения, которое ионизирует молекулы газа, создавая положительно заряженный ион и один или несколько отрицательно заряженных электронов. Освобожденные электроны перемещаются в ионосфере в виде электрических токов.Из-за свободных ионов ионосфера имеет много интересных характеристик.
Ночью радиоволны отражаются от ионосферы и возвращаются обратно на Землю. Вот почему ночью вы часто можете поймать AM-радиостанцию далеко от источника.
Радиационные пояса Ван Аллена представляют собой две кольцевидные зоны из сильно заряженных частиц, которые расположены за пределами атмосферы в магнитосфере . Частицы возникают в результате солнечных вспышек и летят на Землю с солнечным ветром. Попав в ловушку магнитного поля Земли, они следуют вдоль силовых линий поля.Эти линии простираются от экватора до Северного полюса, а также до Южного полюса, а затем возвращаются к экватору.
Когда массивные солнечные бури вызывают перегрузку поясов Ван Аллена частицами, в результате возникает самая впечатляющая особенность ионосферы — ночное сияние , (, рис. ниже). Частицы вращаются по спирали вдоль силовых линий магнитного поля к полюсам. Заряженные частицы возбуждают молекулы кислорода и азота, заставляя их загораться.Каждый газ излучает свет определенного цвета.
(a) Захватывающие световые эффекты видны как северное сияние или северное сияние в северном полушарии. (b) Северное сияние, или южное сияние, окружает Антарктиду.
Нет реального внешнего предела экзосфере , самому внешнему слою атмосферы; молекулы газа в конце концов становятся настолько редкими, что в какой-то момент их больше нет. За пределами атмосферы — солнечный ветер. солнечный ветер состоит из высокоскоростных частиц, в основном протонов и электронов, быстро движущихся от Солнца.
В этом видео очень подробно обсуждаются слои атмосферы. Помните, что химический состав каждого слоя почти одинаков, за исключением озонового слоя, который находится в стратосфере (8a) : http://www.youtube.com/watch?v=S-YAKZoy1A0 (6:44 ).
KQED: Освещение северного сияния
Как выглядело бы магнитное поле Земли, если бы оно было раскрашено в разные цвета? Это было бы похоже на северное сияние! В этом видео QUEST рассматривается полярное сияние, которое дает подсказки о солнечном ветре, магнитном поле Земли и атмосфере Земли.Узнайте больше на: http://science.kqed.org/quest/video/illuminating-the-nhibited-lights/.
Краткое содержание урока
- Особенности изменения атмосферы с высотой: уменьшается плотность, уменьшается давление воздуха, меняются температурные изменения.
- Различные градиенты температуры создают разные слои атмосферы.
- Самый нижний слой — это тропосфера, где находится большая часть атмосферных газов и вся погода на планете.Тропосфера нагревается от земли, поэтому температура уменьшается с высотой. Поскольку теплый воздух поднимается вверх, а холодный опускается, тропосфера нестабильна.
- В стратосфере температура увеличивается с высотой. Стратосфера содержит озоновый слой, который защищает планету от вредного ультрафиолетового излучения Солнца.
Обзорные вопросы
- Подробно объясните, почему поднимается теплый воздух.
- Почему температура воздуха не изменяется равномерно с высотой? Привести примеры.
- Опишите, как земля действует как источник тепла для тропосферы. Что является источником энергии и что с ней происходит?
- Насколько стабильна инверсия и почему? Как образуется инверсия?
- Феникс, штат Аризона, — город в юго-западной пустыне. Лето очень жаркое. Зимние дни часто довольно теплые, но зимние ночи могут быть довольно прохладными. В декабре довольно часто встречаются перевороты. Как в этих условиях образуется инверсия и каковы последствия инверсии для этого разросшегося, зависящего от автомобилей города?
- Почему воздух из тропосферы и стратосферы не может свободно смешиваться?
- Что является источником тепла для стратосферы? Как поглощается это тепло?
- Опишите образование и потерю озона в озоновом слое.Одно встречается чаще, чем другое?
- Как и где создаются «падающие звезды»?
- Почему у незащищенного путешественника кровь закипает в мезосфере?
Дополнительная литература / Дополнительные ссылки
Что следует учитывать
- Как солнечная энергия создает слои атмосферы?
- Как солнечная энергия создает погоду?
- Что случилось бы с жизнью на Земле, если бы в озоновом слое было меньше озона?
слоев атмосферы | Физическая география
Атмосфера слоистая, что соответствует тому, как температура атмосферы изменяется с высотой.Понимая, как температура изменяется с высотой, мы можем многое узнать о том, как устроена атмосфера. В то время как погода имеет место в более низких слоях атмосферы, интересные вещи, такие как красивое полярное сияние, происходят в более высоких слоях атмосферы. Почему поднимается теплый воздух? Молекулы газа могут свободно перемещаться, и если они не удерживаются, как в атмосфере, они могут занимать больше или меньше места.
- Когда молекулы газа холодные, они медлительны и не занимают столько места.При том же количестве молекул в меньшем пространстве и плотность воздуха, и давление выше.
- Когда молекулы газа теплые, они энергично движутся и занимают больше места. Плотность и давление воздуха ниже.
Более теплый и легкий воздух обладает большей плавучестью, чем более прохладный воздух над ним, поэтому он поднимается вверх. Затем более холодный воздух опускается вниз, потому что он плотнее, чем воздух под ним. Это конвекция, которая была описана в главе «Тектоника плит».
Самым разительным свойством, изменяющимся с высотой, является температура воздуха.В отличие от изменений давления и плотности, которые уменьшаются с высотой, изменения температуры воздуха нерегулярны. Изменение температуры с расстоянием называется температурным градиентом .
Атмосфера делится на слои в зависимости от того, как температура в этом слое изменяется с высотой, т.е. температурного градиента слоя. Температурный градиент каждого слоя разный. В одних слоях температура увеличивается с высотой, а в других — уменьшается. Температурный градиент в каждом слое определяется источником тепла в слое.Большинство важных процессов в атмосфере происходит в двух нижних слоях: тропосфере и стратосфере.
Тропосфера
Температура тропосферы самая высокая у поверхности Земли и уменьшается с высотой. В среднем градиент температуры тропосферы составляет 6,5 ° C на 1 000 м (3,6 ° F на 1 000 футов) высоты. Что является источником тепла для тропосферы?
Поверхность Земли является основным источником тепла для тропосферы, хотя почти все это тепло исходит от Солнца.Скалы, почва и вода на Земле поглощают солнечный свет и излучают его обратно в атмосферу в виде тепла. Температура также выше у поверхности из-за большей плотности газов. Чем выше сила тяжести, тем выше температура.
Обратите внимание, что в тропосфере более теплый воздух находится ниже более холодного. Как вы думаете, к чему это приведет? Это состояние нестабильно. Теплый воздух у поверхности поднимается вверх, а холодный воздух выше в тропосфере опускается. Итак, воздух в тропосфере сильно перемешивается.Это смешивание приводит к изменению температурного градиента во времени и в месте. Подъем и опускание воздуха в тропосфере означает, что вся погода на планете происходит в тропосфере.
Иногда наблюдается инверсия температуры , температура воздуха в тропосфере увеличивается с высотой, и теплый воздух располагается поверх холодного. Инверсии очень стабильны и могут длиться несколько дней или даже недель. Они образуют:
- Над сушей ночью или зимой, когда земля холодная.Холодная земля охлаждает воздух, который находится над ней, делая этот нижний слой воздуха более плотным, чем воздух над ним.
- Рядом с побережьем, где холодная морская вода охлаждает воздух над ней. Когда этот более плотный воздух движется вглубь суши, он скользит под более теплым воздухом над землей.
Поскольку температурные инверсии стабильны, они часто улавливают загрязнители и создают нездоровые условия воздуха в городах. В верхней части тропосферы находится тонкий слой, температура в котором не меняется с высотой.Это означает, что более холодный и плотный воздух тропосферы задерживается под более теплым и менее плотным воздухом стратосферы. Воздух из тропосферы и стратосферы редко смешивается.
Стратосфера
Пепел и газ от крупного извержения вулкана могут прорваться в стратосферу , слой над тропосферой. Попав в стратосферу, он остается там в течение многих лет, потому что между двумя слоями очень мало перемешивания. Пилоты любят летать в нижних слоях стратосферы, потому что там нет турбулентности воздуха.
В стратосфере температура увеличивается с высотой. Что является источником тепла для стратосферы? Непосредственным источником тепла для стратосферы является Солнце. Воздух в стратосфере стабилен, потому что более теплый и менее плотный воздух располагается над более холодным и более плотным воздухом. В результате внутри слоя происходит небольшое перемешивание воздуха.
Озоновый слой находится в стратосфере на высоте от 15 до 30 км (от 9 до 19 миль). Толщина озонового слоя меняется в зависимости от сезона и широты.Озоновый слой чрезвычайно важен, потому что газообразный озон в стратосфере поглощает большую часть вредного ультрафиолетового (УФ) излучения Солнца. Благодаря этому озоновый слой защищает жизнь на Земле. Ультрафиолетовый свет высокой энергии проникает в клетки и повреждает ДНК, что приводит к их гибели (что мы знаем как сильный солнечный ожог). Организмы на Земле не приспособлены к сильному ультрафиолетовому излучению, которое убивает или повреждает их. Без озонового слоя, отражающего ультрафиолетовое и ультрафиолетовое излучение, самая сложная жизнь на Земле не прожила бы долго.
Мезосфера
Температура в мезосфере убывает с высотой. Поскольку в мезосфере мало молекул газа, способных поглощать солнечное излучение, источником тепла является стратосфера внизу. Мезосфера очень холодная, особенно в ее верхней части, около -90 градусов по Цельсию (-130 градусов по Фаренгейту).
Воздух в мезосфере имеет чрезвычайно низкую плотность: 99,9% массы атмосферы находится ниже мезосферы. В результате давление воздуха очень низкое.Человек, путешествующий по мезосфере, получит серьезные ожоги от ультрафиолета, поскольку озоновый слой, обеспечивающий защиту от ультрафиолета, находится в стратосфере ниже. Для дыхания кислорода почти не было. Что еще более странно, кровь незащищенного путешественника закипает при нормальной температуре тела из-за очень низкого давления.
Термосфера
Плотность молекул в термосфере настолько мала, что одна молекула газа может пройти около 1 км, прежде чем столкнется с другой молекулой.Поскольку передается так мало энергии, воздух кажется очень холодным. Внутри термосферы находится ионосфера . Ионосфера получила свое название от солнечного излучения, которое ионизирует молекулы газа, создавая положительно заряженный ион и один или несколько отрицательно заряженных электронов. Освобожденные электроны перемещаются в ионосфере в виде электрических токов. Из-за свободных ионов ионосфера имеет много интересных характеристик. Ночью радиоволны отражаются от ионосферы и возвращаются обратно на Землю. Вот почему ночью вы часто можете поймать AM-радиостанцию далеко от источника.
Радиационные пояса Ван Аллена представляют собой две кольцевидные зоны из сильно заряженных частиц, которые расположены за пределами атмосферы в магнитосфере . Частицы возникают в результате солнечных вспышек и летят на Землю с солнечным ветром. Попав в ловушку магнитного поля Земли, они следуют вдоль силовых линий поля. Эти линии простираются от экватора до Северного полюса, а также до Южного полюса, а затем возвращаются к экватору.
Когда массивные солнечные бури вызывают перегрузку поясов Ван Аллена частицами, в результате возникает самая впечатляющая особенность ионосферы — ночное сияние , .Частицы вращаются по спирали вдоль силовых линий магнитного поля к полюсам. Заряженные частицы возбуждают молекулы кислорода и азота, заставляя их загораться. Каждый газ излучает свет определенного цвета.
Нет реального внешнего предела экзосфере , самому внешнему слою атмосферы; молекулы газа в конце концов становятся настолько редкими, что в какой-то момент их больше нет. За пределами атмосферы — солнечный ветер. Солнечный ветер состоит из высокоскоростных частиц, в основном протонов и электронов, быстро движущихся от Солнца.
Нет реального внешнего предела экзосфере , самому внешнему слою атмосферы; молекулы газа в конце концов становятся настолько редкими, что в какой-то момент их больше нет. За пределами атмосферы — солнечный ветер. Солнечный ветер состоит из высокоскоростных частиц, в основном протонов и электронов, быстро движущихся от Солнца.
Жизненно важные признаки планеты
Атмосфера Земли состоит из пяти основных и нескольких вторичных слоев.От самого низкого до самого высокого, основные слои — это тропосфера, стратосфера, мезосфера, термосфера и экзосфера.
Тропосфера. Тропосфера Земли простирается от поверхности Земли в среднем до 12 километров (7,5 миль) в высоту, причем ее высота ниже на полюсах Земли и выше на экваторе. Тем не менее, этот очень неглубокий слой предназначен для удержания всего воздуха, необходимого растениям для фотосинтеза и животным, необходимым для дыхания, а также содержит около 99 процентов всего водяного пара и аэрозолей (мельчайших твердых или жидких частиц, взвешенных в атмосфере).В тропосфере температура обычно понижается по мере того, как вы поднимаетесь, поскольку большая часть тепла, обнаруживаемого в тропосфере, генерируется за счет передачи энергии от поверхности Земли. Тропосфера — самый плотный слой атмосферы, сжатый весом остальной атмосферы над ним. Здесь наблюдается большая часть погоды на Земле, и почти все облака, которые порождаются погодой, находятся здесь, за исключением кучево-дождевых грозовых облаков, вершины которых могут подниматься в самые нижние части соседней стратосферы.Большая часть авиации осуществляется здесь, в том числе в переходной зоне между тропосферой и стратосферой.
Стратосфера. Расположенная на высоте примерно от 12 до 50 километров (от 7,5 до 31 мили) над поверхностью Земли, стратосфера, пожалуй, наиболее известна как дом для озонового слоя Земли, который защищает нас от вредного ультрафиолетового излучения Солнца. Из-за этого ультрафиолетового излучения, чем выше вы поднимаетесь в стратосферу, тем выше становятся температуры. В стратосфере почти нет облаков и погодных условий, но полярные стратосферные облака иногда присутствуют на самых низких и самых низких высотах.Это также самая высокая часть атмосферы, которую могут достичь реактивные самолеты.
Мезосфера. Мезосфера, расположенная на высоте примерно от 50 до 80 километров (от 31 до 50 миль) над поверхностью Земли, становится все холоднее с высотой. Фактически, верхняя часть этого слоя является самым холодным местом в системе Земля со средней температурой около минус 85 градусов по Цельсию (минус 120 градусов по Фаренгейту). Очень скудный водяной пар, присутствующий в верхней части мезосферы, образует серебристые облака, самые высокие облака в атмосфере Земли, которые можно увидеть невооруженным глазом при определенных условиях и в определенное время дня.Большинство метеоров сгорает в этом слое атмосферы. Зондирующие ракеты и летательные аппараты с ракетными двигателями могут достигать мезосферы.
Термосфера. На высоте примерно от 80 до 700 километров (от 50 до 440 миль) над поверхностью Земли находится термосфера, нижняя часть которой содержит ионосферу. В этом слое температура увеличивается с высотой из-за очень низкой плотности молекул, обнаруженных здесь. Он не содержит облаков и водяного пара. Иногда здесь можно увидеть северное сияние и аврора австралис.Международная космическая станция вращается в термосфере.
Экзосфера. Экзосфера, расположенная на высоте примерно от 700 до 10 000 километров (440 и 6200 миль) над поверхностью Земли, представляет собой самый высокий слой атмосферы Земли и сливается с солнечным ветром на своей вершине. Обнаруженные здесь молекулы имеют чрезвычайно низкую плотность, поэтому этот слой не ведет себя как газ, и частицы здесь улетают в космос. Хотя в экзосфере вообще нет погоды, северное сияние и аврора австралис иногда можно увидеть в ее нижней части.Большинство спутников Земли вращаются вокруг экзосферы.
Край космического пространства. Хотя на самом деле нет четкой границы между тем, где заканчивается атмосфера Земли и начинается космическое пространство, большинство ученых используют очертание, известное как линия Кармана, расположенная на 100 километров (62 мили) над поверхностью Земли, чтобы обозначить точку перехода, поскольку 99,99997 процентов площади Земли атмосфера лежит ниже этой точки. Однако исследование, проведенное в феврале 2019 года с использованием данных космического корабля НАСА / Европейского космического агентства по солнечной и гелиосферной обсерватории (SOHO), предполагает, что самые дальние уголки земной атмосферы — облако атомов водорода, называемое геокороной, — может фактически простираться почти на 391 000 миль (629 300 км). километров) в космос, далеко за пределы орбиты Луны.
— Алан Бьюис / Веб-сайт НАСА по глобальному изменению климата
‹Вернуться к основной статье: ‘Атмосфера: Защитное одеяло Земли ‘
.