Пропорции золотого сечения в жизни и искусстве: Золотое сечение вокруг нас | Проекты

Золотое сечение вокруг нас | Проекты

Содержание исследовательской работы:

  • ВВЕДЕНИЕ.
  • Актуальность
  • История золотого сечения
  • Ряд Фибоначчи и золотое сечение
  • Тело человека и золотое сечение
  • Золотое сечение в природе
  • Платоновы тела
  • Мажорное и минорное золото
  • Золотое сечение в скульптуре и живописи
  • Золотое сечение в фотографии
  • Золотое сечение в современной науке
  • Золотое сечение в архитектуре
  • Золотое сечение в архитектуре г. Волгограда
  • Заключение

 

ВВЕДЕНИЕ.

Актуальность

В современной науке и различных видах искусства используется принцип «золотого сечения». Вся Вселенная построена по одному принципу. Однако в науке он не нашёл  практической ценности. Возникает проблема определения смысла пропорциональности в науке

Золотое сечение (гармоническое деление, деление в крайнем и среднем отношении) — деление отрезка на две части таким образом, что большая его часть является средней пропорциональной между всем отрезком и меньшей его частью.

Принципы «золотого сечения» используются в математике, физике, биологии, астрономии и др. науках, в архитектуре и др. искусствах. Они лежат в основе архитектурных пропорций многих замечательных произведений мирового зодчества, главным образом античности и Возрождения.

«В геометрии существует два сокровища — теорема Пифагора и деление отрезка в крайнем и среднем отношении. Первое можно сравнить с ценностью золота, второе можно назвать драгоценным камнем». Эти слова сказал четыре столетия назад немецкий астроном и математик Иоганн Кеплер, они являются эпиграфом практически ко всем трудам, посвященным «золотому сечению». Гениальный ученый поставил пропорцию «золотого сечения» на один уровень с самой знаменитой геометрической теоремой.

Однако «золотому сечению» повезло меньше, чем теореме Пифагора — «классическая» наука и педагогика его игнорируют, а «официальная» математика не признаёт.

     Цель данной работы провести краткий обзор истории и математической сущности золотого сечения, и попытаться осмыслить его роль в современной математике.

  • Познание математических закономерностей в мире, определение значения математики в мировой культуре и дополнение системы знаний представлениями о «Золотом Сечении» как гармонии окружающего мира.
  • Формирование навыков самостоятельной исследовательской деятельности.
  • Формирование навыков решения ключевой проблемы в процессе сотрудничества и создания продукта, полезного обществу.
  • Обучение работе с информацией и медиасредствами для расширения кругозора и развития творческих способностей.

 

Проблема

определение смысла пропорциональности в науке

Объект исследования:

применение пропорциональности в искусстве и научной деятельности.

Предмет  исследования

«золотое сечение» как один из видов пропорциональности

Цель  исследования:

Выявить принципы применения «золотого сечения» в искусстве и  различных областях науки.

Гипотеза исследования заключается в том, что «золотое сечение» вокруг нас повсеместно.

Новизна результатов исследования

Состоит в том, что были выявлены способы применения «золотого сечения» в различных сферах нашей жизни и научной деятельности.

Практическая ценность работы состоит в выявлении способов применения «золотого сечения» в окружающем мире.

  1. История золотого сечения

 

В математике принцип «золотого сечения» впервые был сформулирован в «Началах» Эвклида, самом известном математическом сочинении античной науки, написанном в III веке до н.э. Переводчик Дж. Kампано из Наварры (III в.) сделал к переводу комментарии. Секреты золотого деления ревностно оберегались, хранились в строгой тайне. Они были известны только посвященным.

Если упростить задачу Эвклида, то отрезок линии АВ будет считаться разделенным точкой С (которая ближе к точке А) в «золотой пропорции», если отношение большей части СВ к меньшей АВ равно отношению всего отрезка АВ к большей части СВ, т.

е. СВ:АС=АВ:СВ. Результатом решения этой задачи является иррациональное число, приблизительно равняющееся 1,618, которое и называют золотым сечением, золотым числом или золотой пропорцией.

После Евклида исследованием золотого деления занимались Гипсикл (II в. до н.э.), Папп (III в. н.э.) и др.

В целом все первые геометрические системы — эвклидова геометрия, теорема Пифагора — свидетельствуют о том, насколько волновали древних греков проблемы гармонии, поиск идеальных пропорций и форм. Однако есть предположение, что первыми к принципу золотого сечения пришли все же египтяне. Наиболее известная пирамида Хеопса построена с использованием т.н. золотого треугольника, в котором соотношение гипотенузы к меньшему катету равно золотому сечению. Храмы, барельефы, предметы быта и украшения из гробницы Тутанхамона свидетельствуют, что египетские мастера пользовались соотношениями золотого деления при их создании. Французский архитектор Ле Корбюзье нашел, что в рельефе из храма фараона Сети I в Абидосе и в рельефе, изображающем фараона Рамзеса, пропорции фигур соответствуют величинам золотого деления.

Зодчий Хесира, изображенный на рельефе деревянной доски из гробницы его имени, держит в руках измерительные инструменты, в которых зафиксированы пропорции золотого сечения.

Эстетическим каноном древнегреческой культуры этот принцип стал благодаря Пифагору, который изучал в стране пирамид тайные науки египетских жрецов. Их результат воплощен в фасаде древнегреческого храма Парфенона, где присутствуют золотые пропорции. При его раскопках обнаружены циркули, которыми пользовались архитекторы и скульпторы античного мира. В Помпейском циркуле (музей в Неаполе) также заложены пропорции золотого деления. Также с использованием золотого сечения созданы Афродита Праксителя и театр Диониса в Афинах.

Платон (427-347 гг. до н.э.) также знал о золотом делении. Его диалог «Тимей» посвящен математическим и эстетическим воззрениям школы Пифагора и, в частности, вопросам золотого деления.

Во времена средневекового Ренессанса гениальный итальянский математик Лука Пачоли написал первую книгу о золотом сечении, назвав ее «Божественной пропорцией». По его мнению, даже Бог использовал принцип золотого сечения для создания Вселенной. Эта идея была позже использована Кеплером, последняя книга которого так и называлась — «Гармония Вселенной». Пачоли считают творцом начертательной геометрии.

В то же самое время Леонардо да Винчи, другом которого был Пачоли, использовал для композиционного построения своей знаменитой Джоконды т.н. «золотой равнобедренный треугольник», в котором отношение бедра к основе равно золотому сечению.

Леонардо да Винчи также много внимания уделял изучению золотого деления. Он производил сечения стереометрического тела, образованного правильными пятиугольниками, и каждый раз получал прямоугольники с отношениями сторон в золотом делении. Поэтому он дал этому делению название «золотое сечение». Так оно и держится до сих пор как самое популярное.

В то же время на севере Европы, в Германии, над теми же проблемами трудился Альбрехт Дюрер. Он делает наброски введения к первому варианту трактата о пропорциях. Судя по одному из писем Дюрера, он встречался с Лукой Пачоли во время пребывания в Италии. Альбрехт Дюрер подробно разрабатывает теорию пропорций человеческого тела. Важное место в своей системе соотношений Дюрер отводил «золотому сечению». Рост человека делится в золотых пропорциях линией пояса, а также линией, проведенной через кончики средних пальцев опущенных рук, нижняя часть лица — ртом и т.д. Известен пропорциональный циркуль Дюрера.

Систематизировать знания по золотому сечению и придать им четкую арифметическую форму фундаментальной пропорции мироздания удалось уже только в наше время. Большая роль в исследовании золотого сечения принадлежит украинскому учёному Алексею Стахову, в 80-х годах прошлого века обосновавшему базис нового учения о гармонии систем, должного стать, по его мнению, основной интегрирующей наукой XXI века. Книги винницкого ученого «Введение к алгоритмической теории измерения», «Коды золотой пропорции», «Компьютерная арифметика на числах Фибоначчи и золотом сечении», «Новый тип элементарной математики и компьютерной науки на основе золотого сечения» изданы за рубежом и не остались без внимания западных производителей информационных и компьютерных технологий.

Канадский университет Торонто признал автора «мыслителем XXI века». Весной 2003 г. российский физик-теоретик Юрий Владимиров открыл принцип золотого сечения в структуре атома. Ощутимый прорыв в современных представлениях о природе формообразования биологических объектов сделал в начале 90-х годов украинский ученый Олег Боднар, создавший новую геометрическую теорию филлотаксиса.

 

Ряд Фибоначчи и золотое сечение

 

Существует математическая прогрессия, известная как ряд Фибоначчи, и она имеет особое отношение к числу фи и пирамидам в Гизе. Принципы этого ряда впервые изложил средневековый математик Леонардо Фибоначчи. Этот ряд использовали для описания роста растений. Вот эта последовательность: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233 и так далее. Для того, чтобы получить каждое следующее число в этом ряду, надо сложить два предыдущих: 1+1=2, 1+2=3, 2+3=5, 3+5=8, 5+8=13 и так далее.

У этой последовательности очень интересное соотношение с числом фи: если разделить каждый член этого ряда на предыдущий, полученные результаты будут стремиться к трансцендентному числу 1,6180339+. (Я не заставлю вас проводить эти расчеты. Просто смотрите…)

1/1=1, 2/1=2, 3/2=1.5, 5/3=1.66, 13/8=1.625, 21/13=1.615, 34/21=1.619, 55/34=1.617, 89/55=1.6181, Чем дальше вы будете продолжать считать, тем ближе будете подходить к числу фи. Конечно, вы никогда не дойдете до него, потому что у него нет арифметического решения, но вы будете бесконечно приближаться к нему. Эту последовательность можно изобразить графически, в виде так называемой спирали Фибоначчи.

Эта спираль почти идентична логарифмической спирали фи, известной как спираль золотого сечения. Разница заключается в том, что спираль Фибоначчи – это интерпретация (при помощи целых чисел) арифметически невозможной спирали золотого сечения, у которой нет ни конца, ни начала. У спирали Фибоначчи есть определенное начало.

 

Тело человека и золотое сечение

Все кости человека выдержаны в пропорции золотого сечения.

Пропорции различных частей нашего тела составляют число, очень близкое к золотому сечению. Если эти пропорции совпадают с формулой золотого сечения, то внешность или тело человека считается идеально сложенными.

Если принять центром человеческого тела точку пупа, а расстояние между ступней человека и точкой пупа за единицу измерения, то рост человека эквивалентен числу 1.618.

Расстояние от уровня плеча до макушки головы и размера головы равно 1:1.618

Расстояние от точки пупа до макушки головы и от уровня плеча до макушки головы равно 1:1.618

Расстояние точки пупа до коленей и от коленей до ступней равно 1:1.618

Расстояние от кончика подбородка до кончика верхней губы и от кончика верхней губы до ноздрей равно 1:1.618

Собственно точное наличие золотой пропорции в лице человека и есть идеал красоты для человеческого взора.

Расстояние от кончика подбородка до верхней линии бровей и от верхней линии бровей до макушки равно 1:1.618

Расстояние от кончика подбородка до верхней линии бровей и от верхней линии бровей до макушки равно 1:1. 618

Высота лица / ширина лица

Центральная точка соединения губ до основания носа / длина носа.

Высота лица / расстояние от кончика подбородка до центральной точки соединения губ

Ширина рта / ширина носа

Ширина носа / расстояние между ноздрями

Расстояние между зрачками / расстояние между бровями

Достаточно лишь приблизить сейчас вашу ладонь к себе и внимательно посмотреть на указательный палец, и вы сразу же найдете в нем формулу золотого сечения.

Каждый палец нашей руки состоит из трех фаланг.Сумма двух первых фаланг пальца в соотношении со всей длиной пальца и дает число золотого сечения (за исключением большого пальца).

Кроме того, соотношение между средним пальцем и мизинцем также равно числу золотого сечения

У человека 2 руки, пальцы на каждой руке состоят из 3 фаланг (за исключением большого пальца). На каждой руке имеется по 5 пальцев, то есть всего 10, но за исключением двух двухфаланговых больших пальцев только 8 пальцев создано по принципу золотого сечения. Тогда как все эти цифры 2, 3, 5 и 8 есть числа последовательности Фибоначчи.

Также следует отметить тот факт, что у большинства людей расстояние между концами расставленных рук равно росту.

Особенность бронхов, составляющих легкие человека, заключена в их асимметричности. Бронхи состоят из двух основных дыхательных путей, один из которых (левый) длиннее, а другой (правый) короче.

Было установлено, что эта асимметричность продолжается и в ответвлениях бронхов, во всех более мелких дыхательных путях.

Причем соотношение длины коротких и длинных бронхов также составляет золотое сечение и равно 1:1,618.

Во внутреннем ухе человека имеется орган Cochlea («Улитка»), который исполняет функцию передачи звуковой вибрации. Эта костевидная структура наполнена жидкостью и также сотворена в форме улитки, содержащую в себе стабильную логарифмическую форму спирали = 73? 43’.

Давление крови изменяется в процессе работы сердца. Наибольшей величины оно достигает в левом желудочке сердца в момент его сжатия (систолы). В артериях во время систолы желудочков сердца кровяное давление достигает максимальной величины, равной 115-125 мм ртутного столбца у молодого, здорового человека. В момент расслабления сердечной мышцы (диастола) давление уменьшается до 70-80 мм рт.ст. Отношение максимального (систолического) к минимальному (диастолическому) давлению равно в среднем 1,6, то есть близко к золотой пропорции.

Если взять за единицу среднее давление крови в аорте, то систолическое давление крови в аорте составляет 0,382, а диастолическое — 0,618, то есть их отношение соответствует золотой пропорции. Это означает, что работа сердца в отношении временных циклов и изменения давления крови оптимизированы по одному и тому же принципу — закону золотой пропорции.

Во Вселенной все известные человечеству галактики и все тела в них существуют в форме спирали, соответствующей формуле золотого сечения.

 

Золотое сечение в природе

 

Изучая конструкции раковин, ученые обратили внимание на целесообразность форм и поверхностей раковин: внутренняя поверхность гладкая, наружная — рифленая. Внутри покоится тело моллюска — внутренняя поверхность должна быть гладкой. Наружные ребра увеличивают жесткость раковины и, таким образом, повышают ее прочность. Форма раковин поражает своим совершенством и экономичностью средств, затраченных на ее создание. Идея спирали в раковинах выражена не приближенно, а в совершенной геометрической форме, в удивительно красивой, «отточенной» конструкции

У большинства улиток, которые обладают раковинами, раковина растет в форме логарифмической спирали, которая точно соответствуют «золотой пропорции»

В ящерице с первого взгляда улавливаются приятные для нашего глаза пропорции – длина ее хвоста так относится к длине остального тела, как 62 к 38.

Это цикорий. Приглядимся к нему внимательно. От основного стебля образовался отросток. Тут же расположился первый листок. Отросток делает сильный выброс в пространство, останавливается, выпускает листок, но уже короче первого, снова делает выброс в пространство, но уже меньшей силы, выпускает листок еще меньшего размера и снова выброс. Если первый выброс принять за 100 единиц, то второй равен 62 единицам, третий – 38, четвертый – 24 и т.д. Длина лепестков тоже подчинена золотой пропорции.

Большой интерес представляет исследование форм птичьих яиц. Их всевозможные формы колеблются между двумя крайними типами: один из них может быть вписан в прямоугольник золотого сечения, другой — в прямоугольник с модулем 1,272 (корень золотой пропорции)

Такие формы птичьих яиц не являются случайными, поскольку в настоящее время установлено, что форме яиц, описываемых отношением золотого сечения, отвечают более высокие прочностные характеристики оболочки яйца.

Бивни слонов и вымерших мамонтов, когти львов и клювы попугаев являют собой логарифмические формы и напоминают форму оси, склонной обратиться в спираль.

Спиралевидную форму можно увидеть и в расположении семян подсолнечника, и в шишках сосны, в ананасах, кактусах, строении лепестков роз и т.д.

В живой природе широко распространены формы, основанные на «пентагональной» симметрии (морские звезды, морские ежи, цветы). Пяти-лепестковыми являются

Цветы кувшинки, шиповника, боярышника, гвоздики, груши, черемухи, яблони, земляники и многих других.

Справа показано цветок китайской розы с ярко выраженной «пентагональной» симметрией

Также можно встретить золотую пропорцию в разрезе яблока (пентаграмма).

Молекула ДНК состоит из двух вертикально переплетенных между собой спиралей. Длина каждой из этих спиралей составляет 34 ангстрема, ширина 21 ангстрема. (1 ангстрем — одна стомиллионная доля сантиметра).

Так вот 21 и 34 — это цифры, следующие друг за другом в последовательности чисел Фибоначчи, то есть соотношение длины и ширины логарифмической спирали молекулы ДНК несет в себе формулу золотого сечения 1:1,618.

Очень совершенна форма стрекозы, которая создана по законам золотой пропорции: отношение длин хвоста и корпуса равно отношению общей длины к длине хвоста.

Многие насекомые (например, бабочки, стрекозы) в горизонтальном разрезе имеют простые асимметричные формы, основанные на золотом сечении.

Паук плетет паутину спиралеобразно

Золотое сечение присутствует в строении всех кристаллов, но большинство кристаллов микроскопически малы, так что мы не можем разглядеть их невооруженным глазом.

Однако снежинки, также представляющие собой водные кристаллы, вполне доступны нашему взору.

Все изысканной красоты фигуры, которые образуют снежинки, все оси, окружности и геометрические фигуры в снежинках также всегда без исключений построены по совершенной четкой формуле золотого сечения.
Оказывается, что расположение листьев на стеблях также носит строгий математический характер и это явление называется в ботанике «филлотаксисом».

Суть филлотаксиса состоит в винтовом расположении листьев на стебле растений (ветвей на деревьях, лепестков в соцветьях и т.д.).

В явлении филлотаксиса используются более сложные понятия симметрии, в частности понятие «винтовая ось симметрии». Рассмотрим, например, расположение листьев на стебле растения ( слева). Мы видим, что листья находятся на различных высотах стебля вдоль винтовой линии, обвивающейся вокруг его поверхности. Для того чтобы перейти от нижележащего листа к следующему, приходится мысленно повернуть лист на некоторый угол вокруг вертикальной оси стебля, а затем поднять его на определенный отрезок вверх. В этом и состоит суть «винтовой симметрии
А теперь рассмотрим характерные „винтовые оси“, которые возникают на стеблях растений (Рис слева). На Рисунке изображен стебель растения с винтовой осью симметрии третьего порядка. Проследим линию листорасположения на этом рисунке. Для того, чтобы перейти от листа 1 к листу 2, следует повернуть первый вокруг оси стебля на 120° против часовой стрелки (если смотреть снизу) и затем передвинуть листок 1 вдоль стебля по вертикали до тех пор, пока он не совместится с листком 2. Повторяя подобную операцию, перейдем от листа 2 к листу 3, а затем к листу 4. Обратим внимание на то, что листок 4 лежит над листком 1 (как бы повторяет его, но этажом выше) и что, идя от листа 1 к листу 4, мы трижды совершили поворот на угол 120°, т.е. осуществили полный оборот вокруг оси стебля (120° х 3 = 360°).

Угол поворота винтовой оси у ботаников называется „углом расхождения листьев“. Вертикальная прямая, соединяющая два листа, расположенные друг над другом на стебле, именуется „ортостихой“. Отрезок 1-4 ортостихи соответствует полной трансляции винтовой оси. Число оборотов вокруг оси стебля для перехода от нижнего листа к вышележащему, расположенному в точности над нижним (по ортостихе), может равняться не только единице, но и двум, трем и т.д. Это число оборотов называется „листовым циклом“. В ботанике принято характеризовать винтовое листорасположение с помощью дроби, числителем которой является число оборотов в листовом цикле, а знаменателем — число листьев в этом цикле. В рассмотренном нами случае мы имеем винтовую ось типа 1/3.

Заметим, что существуют и более замысловатые оси, например, типа 3/8, 5/13 и т.д.

Какими могут быть числа a и b, характеризующие винтовую ось типа a/b. Дробь 1/2 свойственна злакам, березе, винограду; 1/3 — осоке, тюльпану, ольхе; 2/5 — груше, смородине, сливе; 3/8 — капусте, редьке, льну; 5/13 — ели, жасмину и т. д.

Ботаники утверждают, что дроби, характеризующие винтовые оси растений, образуют строгую математическую последовательность, состоящую из отношений соседних чисел Фибоначчи, то есть:
1/2, 1/3, 2/5, 3/8, 5/13, 8/21, 13/34,…

Вспомним, что ряд Фибоначчи есть следующая последовательность чисел:1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,…

Какова же „физическая“ причина, лежащая в основе „законов филлотаксиса“?

Ответ очень прост. Оказывается, что именно при таком расположении листьев достигается максимум притока солнечной энергии к растению.
Практически все соцветья и плотно упакованные ботанические структуры (сосновые и кедровые шишки, ананасы, кактусы, головки подсолнечников и многие другие) также строго следуют числам Фибоначчи (Семечки в головке подсолнуха располагаются по спиралям, при этом отношение числа левых и правых спиралей равно отношению соседних чисел Фибоначчи).

В биологическом и растительном мире вступает в действие принцип экономии материи, который не действует в неорганическом мире.

Ярким примером этому служит стремление живых организмов к экономии костной субстанции при распределении материи, дающее максимум прочности во всех нужных направлениях.

Кроме этого, живые организмы проявляют лишь одним им свойственный феномен — феномен роста. Неорганические кристаллы увеличиваются путем присоединения идентичных элементов; живой организм растет путем „всасывания“, идущего изнутри и направляющегося наружу.

Отвечая на вопрос: „Где граница между живой и мертвой природой?“ многие известные специалисты в области симметрии и кристаллографии обращают внимание на то, что это различие состоит в использовании в живых организмах так называемой „пятерной“ или „пентагональной“ симметрией, связанной с золотым сечением.
ПЛАТОНОВЫ ТЕЛА

Правильные многогранники известны с древнейших времён. Их орнаментные модели можно найти на резных каменных шарах, созданных в период позднего неолита, в Шотландии, как минимум за 1000 лет до Платона. В костях, которыми люди играли на заре цивилизации, уже угадываются формы правильных многогранников.

В значительной мере правильные многогранники были изучены древними греками. Некоторые источники  приписывают честь их открытия Пифагору В любом случае, Теэтет дал математическое описание всем пяти правильным многогранникам и первое известное доказательство того, что их ровно пять.

Правильные многогранники характерны для философии Платона, в честь которого и получили название «платоновы тела». Платон писал о них в своём трактате Тимей (360г до н. э.), где сопоставил каждую из четырёх стихий (землю, воздух, воду и огонь) определённому правильному многограннику.

Евклид дал полное математическое описание правильных многогранников в последней, XIII книге Начал.

В XVI веке немецкий астроном Иоганн Кеплер пытался найти связь между пятью известными на тот момент планетами Солнечной системы (исключая Землю) и правильными многогранниками. В ней пять правильных многогранников помещались один в другой и разделялись серией вписанных и описанных сфер. Каждая из шести сфер соответствовала одной из планет (Меркурию, Венере, Земле, Марсу, Юпитеру и Сатурну). Таким образом, структура Солнечной системы и отношения расстояний между планетами определялись правильными многогранниками.

 

МАЖОРНОЕ И МИНОРНОЕ ЗОЛОТО

Известно, что построить пропорцию золотого сечения можно с помощью линейки и циркуля. Разделим квадрат по горизонтали пополам. Проведем диагональ полуквадрата и, приняв ее за радиус, перенесем на вертикаль. Полученный прямоугольник будет прямоугольником золотого сечения

В прямоугольнике со сторонами 1 и 2 (его называют или полуквадратом, или двойным квадратом) диагональ равна √5. Если к этой величине прибавить единицу и полученный отрезок разделить пополам, то мы получим мажорное золото. Если же единицу отнять и остаток разделить на два, то золото будет минорным.

При этом надо помнить, что:  Части относятся друг к другу по удвоенному минорному золоту, когда они получены путем разделения целого на √5.

Золотое сечение в искусстве

Золотая пропорция применялась многими античными скульпторами. Известна золотая пропорция статуи Аполлона Бельведерского: рост изображенного человека делится пупочной линией в золотом сечении.

Переходя к примерам “золотого сечения” в живописи, нельзя не остановить своего внимания на творчестве Леонардо да Винчи. Посмотрим внимательно на картину «Джоконда». Портрет Моны Лизы (Джоконда) привлекает тем, что композиция рисунка построена на „золотых треугольниках“, точнее на треугольниках, являющихся кусками правильного звездчатого пятиугольника.  Зрачок левого глаза, через который проходит вертикальная ось полотна, находится на пересечении двух биссектрис верхнего золотого треугольника, которые с одной стороны, делят пополам углы при основании золотого треугольника, а с другой стороны, в точках пересечения с бедрами золотого треугольника делят их в пропорции Золотого сечения.

Таким образом, Леонардо Да Винчи использовал в своей картине не только принцип симметрии, но и Золотое сечение Пропорции Золотого сечения в произведении Леонардо Да Винчи — «Тайной вечере» Соответствующие прямоугольники в картине — »золотые». Было так же определено, что больше всего внимания смотря на прямоугольный рисунок придается центральной части, образованной точками которые делят этот рисунок в золотой пропорции.

Одним из высших достижений классического греческого искусства может служить статуя Дорифора, изваянная Поликтетом в V веке до н.э. Эта статуя считается наилучшим примером для анализа пропорций идеального человеческого тела, установленных античными греческими скульпторами, и напрямую связана с Золотым сечение. М=0,618…Венера Милосская, статуя богини Афродиты и эталон женской красоты, является одним из лучших памятников греческого скульптурного искусства — также построена на пропорциях золотого сечения

 

Золотое сечение в фотографии

Золотое сечение является основой в построении геометрических пропорций гармоничных изображений, чертежей, написании картин, архитектуре и фотографии. Теоретическое и практическое знание правил золотого сечения, и использование его даёт преимущество фотографу, так как правильно построенное (скомпонованное) изображение более естественно и понятно. Впервые упоминание деления отрезка в крайнем и среднем отношении встречается в «Началах Евклида» (ок. 300 лет до н. э.), и использовалось в построении правильного пятиугольника. Леонардо да Винчи так же использовал золотое сечение в чертежах своих работ и набросках для будущих картин, а его современник Лука Пачоли называл это отношение «божественной пропорцией». Правила золотого сечения на столько естественны, что многие историки ищут его проявления во всей древней архитектуре и художественных произведениях, но есть мнение, что значимость золотого сечения в искусстве преувеличено. При этом, руководствуясь именно пропорциями (отношениями) размеров золотого сечения известные художники выбирали холсты для написания своих работ.

     Золотое сечение – это деление отрезка AC на две части таким образом, что большая его часть AB относится к меньшей BC так, как весь отрезок AC относится к AB (т.е. AB:BC = AC:AB). Это отношение равно 5:8 и близко к стандарту кадра (24х36 мм = 5:7,5 = 2:3).

     Золотое сечение в фотографии имеет свои правила, которые заключаются в использовании центральных точек пересечения прямых, воображаемые прямые делят фотографию на три горизонтальные и вертикальные части. Как оказалось, математические правила могут быть применимы к таким субъективным и творческим материям как фотография. И это хорошо работает, если соблюдать правила золотого сечения, фотографии получатся более гармоничными. Нужно лиши помнить о золотом сечении во время фотосъёмки, взять эти правила за основу фотографии и постоянно тренировать свой вкус. Но если во время съёмки не удалось добиться оптимального результата, можнокадрировать изображение по сетке золотого сечения. В качестве примера возьму не совсем удачную фотографию в композиционном плане. Котэ слишком быстро двигался и особо не хотел позировать, так что о правилах золотого сечения некогда было думать, именно по этому кадр получился таким скомканным.

 

Золотое сечение в современной науке

В каждой науке есть т. н. «метафизические» знания, без которых невозможно существование самой науки. Например, если исключить из математики понятия натурального и иррационального чисел или аксиомы геометрии, математика сразу же перестанет существовать. С таким же правом к разряду «метафизических» знаний может быть отнесено и «золотое сечение», которое считалось «каноном» античной культуры, а затем и эпохи Возрождения. Однако, как это ни парадоксально, в современной теоретической физике и математике «золотая пропорция» никак не отражена. Ныне делаются попытки показать, что «золотое сечение» является одной из важнейших «метафизических» идей, без которой трудно представить дальнейшее развитие науки, в частности, теоретической физики и математики.Анализ современных программ образования в таких странах, как США, Канада, Россия и Украина, показывает, что в большинстве из них нет даже упоминания о «золотом сечении». То есть, имеет место сознательное игнорирование одного из важнейших открытий античной математики. Возможно, причину следует искать в негативном отношении современной «материалистической» науки и «материалистического» образования к астрологии и так называемым «эзотерическим» наукам. В них «золотое сечение» и связанные с ним геометрические фигуры – «пентаграмма», «Платоновы тела», «куб Метатрона» – широко используются в качестве основных «сакральных» символов. И «материалистическое» образование не нашло ничего более разумного, как выбросить золотое сечение на свалку «сомнительных научных концепций» вместе с астрологией и «эзотерическими» науками. В результат большинство т.н. «образованных» людей хорошо знают «теорему Пифагора», но имеют весьма смутное представление о «золотом сечении».В настоящее время исследуются математические теории связанные с принципами «золотого сечения»: новая теория гиперболических функций, новая теория чисел, новая теория измерения, теория матриц Фибоначчи и так называемых «золотых» матриц, новые компьютерные арифметики, новая теорию кодирования и новая теория криптографии. Суть новой науки, в пересмотре с точки зрения золотого сечения всей математики, начиная с Пифагора, что, естественно, повлечет в теории новые и наверняка очень интересные математические результаты. В практическом отношении – «золотую» компьютеризацию. А поскольку «математика гармонии» существенно дополнит классическую математику, вполне возможно придется пересмотреть и всю систему современного математического образования.

Золотое сечение в архитектуре

В книгах о “золотом сечении” можно найти замечание о том, что в архитектуре, как и в живописи, все зависит от положения наблюдателя, и что, если некоторые пропорции в здании с одной стороны кажутся образующими “золотое сечение”, то с других точек зрения они будут выглядеть иначе. “Золотое сечение” дает наиболее спокойное соотношение размеров тех или иных длин.

Одним из красивейших произведений древнегреческой архитектуры является Парфенон (V в. до н. э.).

Парфенон имеет 8 колонн по коротким сторонам и 17 по длинным. выступы сделаны целиком из квадратов пентилейского мрамора. Благородство материала, из которого построен храм, позволило ограничить применение обычной в греческой архитектуре раскраски, она только подчеркивает детали и образует цветной фон (синий и красный) для скульптуры. Отношение высоты здания к его длине равно 0,618. Если произвести деление Парфенона по “золотому сечению”, то получим те или иные выступы фасада.

Другим примером из архитектуры древности является Пантеон.Известный русский архитектор М. Казаков в своем творчестве широко использовал “золотое сечение”.Его талант был многогранным, но в большей степени он раскрылся в многочисленных осуществленных проектах жилых домов и усадеб. Например, “золотое сечение” можно обнаружить в архитектуре здания сената в Кремле. По проекту М. Казакова в Москве была построена Голицынская больница, которая в настоящее время называется Первой клинической больницей имени Н.И. Пирогова (Ленинский проспект, д. 5).

Еще один архитектурный шедевр Москвы – дом Пашкова – является одним из наиболее совершенных произведений архитектуры В. Баженова.

Прекрасное творение В. Баженова прочно вошло в ансамбль центра современной Москвы, обогатило его. Наружный вид дома сохранился почти без изменений до наших дней, несмотря на то, что он сильно обгорел в 1812 г.

При восстановлении здание приобрело более массивные формы. Не сохранилась и внутренняя планировка здания, о которой дают представления только чертеж нижнего этажа.

Многие высказывания зодчего заслуживают внимание и в наши дни. О своем любимом искусстве В. Баженов говорил: “Архитектура – главнейшие имеет три предмета: красоту, спокойность и прочность здания… К достижению сего служит руководством знание пропорции, перспектива, механика или вообще физика, а всем им общим вождем является рассудок”.

Золотое сечение в архитектуре г. Волгограда

С момента приобретения статуса города-героя  внешне город сильно изменился. Архитекторы и строители,  работающие в городе создают здания, архитектурные ансамбли, которые прекрасно гармонируют с современным дизайном города.

И Именно  принцип – параллельное и гармоничное соединение привычных нам образов… — и составляет основу эстетической архитектуры и уникальности нового  Волгограда”

Я позволю изложить концепцию столичного градостроительства Волгограда  в оригинале, устами автора проекта: “ Эстетическая ценность композиции городского центра зависит от художественных качеств и приёмов размещения архитектурных форм с точки зрения их восприятия в ракурсе человеческих глаз “.

Опорными элементами данного восприятия будут служить четыре объёмно – пространственных композиции: Администрация города, здание Педагогического университета, звезда  Вечного  огня, здание  государственного  педуниверситета.

Ещё в эпоху Возрождения художники открыли что любая картина имеет определенные точки, невольно приковывающие наше внимание, так называемые зрительные центры. При этом абсолютно неважно, как формат имеет картина – горизонтальный или вертикальный. Таких точек всего четыре, и расположены они на расстоянии 3/8 и 5/8 от соответствующих краев плоскости.

Данное открытие у художника того времени получило название «Золотое сечение» картины. Поэтому, для того чтобы привлечь внимание главному элементу фотографии, необходимо совместить этот элемент с одним из зрительных центров.

Заключение

В заключении можно привести некоторые научные факты которые были открыты благодаря «золотому сечению»

  • пояс астероидов между Марсом и Юпитером- по пропорции там должна

находится  ещё она планета;

  • Возбуждение струны в точке, делящей её в отношении «золотого деления» , не вызовет колебаний струны, то есть это точка компенсации;
  • на летательных аппаратах с электромагнитными источниками энергии создают прямоугольные ячейки с пропорцией «золотого сечения»

Проанализировав применение «золотого сечения» в искусстве, а также различные научные открытия о существовании «золотой» пропорции в различных областях нашей жизни можно предположить, что:

  • При анализе и возможных численных выводах о чем-либо в живой природе сначала необходимо рассматривать «золотую» пропорцию первоначальных параметров;
  • «золотое сечение» является основной пропорциональностью мира.

Список использованной литературы.

  1. Математический энциклопедический словарь – М.: Советская энциклопедия, 1988.
  2. Атанасян Л.С.  Геометрия 7-9. — М.: «Просвещение», 1992.
  3. Волошинов В.А. Пифагор. — М.: Просвещение, 1993.
  4. Воробьев Н.Н. Числа Фибоначчи. — М.: Наука, 1978.
  5. Васютинский Н. Золотая пропорция. — М.: Молодая гвардия, 1990.
  6. Ковалев Ф.В. Золотое сечение в живописи – К: Высшая школа, 1989.
  7. Азевич А.И. Двадцать уроков гармонии: гуманитарно-математический курс. – М.: Школа-пресс, 1998.
  8. Д. Пидоу. Геометрия и искусство. – М.: Мир, 1979.
  9. «Математика. Я познаю мир». – М.: Аванта, 1998

 

Список ресурсов

http://www.abc-people.com/idea/zolotsech/

http://n-t.ru/tp/iz/zs.htm

http://tmn.fio.ru/works/04x/304/p3_4.htm

http://www.arstudia.ru/kazakov/2.html

http://e-project.redu.ru/mos/images/blds.htm

 

Пропорции в искусстве.

Есть ли что-то лучше золотого сечения? Исследование более 1 000 000 старых и современных картин / Хабр

Перевод поста Майкла Тротта (Michael Trott) «Aspect Ratios in Art: What Is Better Than Being Golden? Being Plastic, Rooted, or Just Rational? Investigating Aspect Ratios of Old vs. Modern Paintings».
Код, приведенный в статье, можно скачать здесь.
Выражаю огромную благодарность Кириллу Гузенко KirillGuzenko за помощь в переводе и подготовке публикации


Содержание


Предисловие: золотое сечение — красивая математическая концепция
Работа Фехнера 1876 года об эстетичности прямоугольников и соотношениях сторон в картинах
Легкий старт: анализ «Artwork» — области базы знаний Wolfram Knowledgebase
Первая часть: особенности вероятностного распределения соотношений сторон
Соотношения сторон для разных веков, жанров и художников
Анализируя пять старых немецких музейных каталогов
Коллекция Кресса: четыре больших PDF файла
У нас представлены коллекции следующих галерей: Метрополитен (Metropolitan), институт искусств Чикаго, Эрмитаж, Национальная Галерея (National Gallery), Рейксмюзеум (Rijks) и Тейт Британия
Исключение в соотношениях сторон: Национальная портретная галерея
Веб-галерея изящных искусств: удобная база данных, готовая к использованию
Примечание II: важность точности в измерениях
WikiArt: еще один крупный веб-ресурс
Коллекция Французского государственного музея
Картины в итальянских церквях: высота есть всё
Смитсоновская коллекция
Большая коллекция картин в Великобритании
Нынешний рынок изящных искусств: рациональней чем когда-либо
Проданные картины: большинство написаны недавно, а у распределения длинный хвост
Восток: все показатели отличаются
Пропорции пакетов, автомобилей, этикеток, логотипов, эмблем, бумаги, банкнот, почтовых марок и фильмов

Продукты из супермаркета

Винные этикетки

Этикетки немецких сортов пива

Логотипы продуктов питания

Банкноты

Размеры автомобилей

Бумажные листы

Марки

Эмблемы команд NCAA (Национальной ассоциации студенческого спорта)

Эмблемы немецких футбольных клубов

Форматы фильмов
Заключение: так какое соотношение самое «лучшее»?

Картины великих мастеров — едва ли не самое прекрасное из человеческого наследия. Ими дорожили и восхищались, бережно хранили и продавали за сотни миллионов долларов, и, возможно, не по случайности они являются главной целью похитителей предметов искусства. Их композиции, цвета, детали, темы могут держать нас в восхищении и внимании часами. Но что можно сказать об отношении их внешних размеров — высоты к ширине?

В 1876 году немецкий ученый Густав Теодор Фехнер изучал человеческое восприятие прямоугольных форм, а после заключил, что прямоугольники с золотой пропорцией (то же, что и золотое сечение) наиболее приятны для человеческого глаза. Чтобы проверить свои экспериментальные наблюдения, Фехнер также проанализировал соотношения более десяти тысяч картин.

Немного больше узнать о Фехнере нам поможет следующий код:

По меркам 1876 года Фехнер проделал удивительную работу, и мы можем повторить некоторые фрагменты его аналитической работы, используя возможности современного информационно насыщенного мира — с технологиями больших данных, инфографикой, численными моделями, системами знаний научного и цифрового миров.

После обзора золотой пропорции и выводов Фехнера, мы рассмотрим соотношения сторон в различных группах картин и итоговое распределение, а также наиболее популярные соотношения. Мы узнаем о тенденциях последнего столетия в области соотношений сторон и рассмотрим то, как оно стало более рационалистическим.

Золотое сечение φ = (1+

) /2≈1.618033988… — особое число в математике. В двоичной или десятичной форме последовательность его чисел выглядит более или менее случайной:

Его представление в виде цепной дроби столь же лаконично и красиво, сколь и получаемое математическое выражение:

Можно записать его в более явной форме:

Другим схожим представлением является подобная итерация квадратного корня:

Хотя это и простые квадратные корни, однако золотое сечение — особенное число. Например, это самое плохо приближаемое иррациональное число:

Вот график, показывающий последовательность q ∙ |q ∙ ϕ – round(q ∙ ϕ)|. ½:

Кроме того, мы можем показать приближения к золотому сечению, беря последовательные части цепной дроби:

Визуализация определяющего золотого сечения уравнения 1 + 1 / φ = φ показана ниже. Оно задает отношение показанных отрезков (красный отрезок имеет длину 1 / φ, синий — 1).

Ниже представлены широкий и высокий прямоугольники с соотношениями сторон, равными золотому сечению и 1/золотое сечение соответственно.

И не удивительно, что столь красивое с точки зрения математики число часто использовалось для создания эстетичных форм. История золотого сечения уходит в глубину веков. Оно было математически описано ещё Евклидом, и знаменитые рисунки да Винчи были основаны на золотом сечении.

На сайте Wolfram Demonstrations Project имеется около девяноста интерактивных документов, завязанных на использование золотого сечения. Особенно стоит обратить внимание на Мону Лизу и золотой прямоугольник, а так же на золотую спираль.

Золотое сечение часто встречается в природе. Версия золотого сечения для углов есть так называемый золотой угол, который разбивает окружность на две части, длины которых имеют отношение, равное золотому сечению:

Золотой угол, к примеру, можно встретить в филлотаксисных моделях:

В работе M. Akhtaruzzaman and A. Shafie приводится очень длинный список того, где в природе и рукотворных объектах встречается золотое сечение.

Тем не менее, универсальность золотого сечения в искусстве часто переоценивается. Самые популярные заблуждения приведены в работе за авторством Markowsky.

В дальнейшем мы часто будем сталкиваться с квадратным корнем из золотого сечения. Если рассматривать и комплексные числа, то другая, достаточно простая цепная дробь даст квадратный корень из золотого сечения в составе своей действительной и мнимой части ( — прим. ред.):

Сам термин золотое сечение впервые был использован Мартином Омом — братом известного физика Георга Ома — в своей книге в 1835 году.

В первом томе часто цитируемой работы

Vorschule der Aesthetik

(1876), Густава Теодора Фехнера — физика, психолога-экспериментатора и философа — обсуждается восприятие человеком золотого сечения.

В наши дни Фехнер, вероятно, наиболее известен законом о субъективности в восприятии ощущений (интенсивность ощущения прямо пропорциональна логарифму интенсивности раздражителя), который носит название закон Вебера-Фехнера:

В главе 14.3 (том 1) своей книги Фехнер рассуждает об эстетике в соотношениях сторон прямоугольников. Опросив 347 человек, каждому из которых было предложено на выбор 10 прямоугольников с различными соотношениями сторон, самым популярным оказался с соотношением сторон 34/21, и это соотношение отличается от золотого сечения менее чем на 0,1%. Ниже представлена цитируемая по сей день, однако редко встречающаяся в изданиях, таблица с результатами Фехнера:

В 33 главе второго тома обсуждаются размеры картин, в главе 44 приводится подробный анализ (на 41 страницу) 10 558 картин из 22 европейских галерей. Занятно получилось — Фехнер обнаружил, что типичное отношение высоты и ширины для живописи сильно отклоняется от ожидаемого золотого сечения.

Фехнер провёл детальный анализ 775 картин на охотничью и военную тематику, и более грубый анализ для оставшихся 9 783 картин. Ниже представлены результаты для картин на охотничью и военную тематику (Genre), пейзажей (Landschaft) и натюрмортов (Stillleben). В таблице высота обозначается как h, а ширина как b. А V.-M. есть соотношение h/b или b/h:

И вот, в наши дни, мы можем повторить его анализ, используя современные средства и знания.

Более подробно ознакомиться с изменёнными версиями эксперимента Фехнера помогут работы McManus (тут и тут), McManus et al., Konecni, Bachmann, Stieger и Swami, Friedenberg, Ohta, Russel, Green, Davis and Jahnke, Phillips et al. и Höge. Jensen недавно проанализировал картины из базы CGFA, но используемые дискретные значения высоты и ширины (из анализа количества пикселей в изображениях) не позволяют получить крупномасштабную структуру распределения соотношений сторон, и тем более получить явные экстремумы (ниже будет приведен анализ тестового множества изображений).

В то время как Фехнер сделал подробный анализ количественных инвариантов (средние значения, медианы и прочее) для соотношений сторон картин, он не исследовал общую форму распределения соотношений сторон, равно как и распределение локальных максимумов в этом распределении.

Одной из предметных областей функции

EntityValue

является «

Artwork

» (предметы искусства). Здесь мы можем получить названия работ, имена художников, даты окончаний работ над картинами, а также значения ширины и высоты нескольких тысяч картин. Картины доступны как класс объектов из области «

Artwork

» в Wolfram Knowledgebase (базе знаний Wolfram):

Вот типичный пример получаемых данных:

Картины имеют самое разнообразное соотношение сторон — имеются как очень широкие, так и весьма вытянутые вертикально. Ниже представлен коллаж из 36 изображений картин, отсортированных по их соотношению сторон (отношение ширины к высоте). Каждое изображение представляется в сером квадрате с красной каймой:

Большинство картин имеют соотношение сторон в диапазоне от 1/4 до 4. Вот примеры весьма вытянутых по ширине или высоте картин:

Мы можем получить представление о наиболее распространенных тематиках картин, составив из них облако слов:

Теперь, когда мы загрузили все изображения, давайте их исследуем. Можно взять средние значения всех цветов для каждой картины и разместить их на цветовом треугольнике RGB:

Прежде чем анализировать пропорции h/b более подробно, давайте рассмотрим их произведение, что даст нам площадь картины. (В упомянутой выше работе Фехнера много внимания уделялось этому вопросу.)

Разместим теперь все картины на плоскости (по горизонтали — соотношение сторон, по вертикали — площадь картины). Так как размеры картин сильно варьируются, мы будем использовать логарифмическую шкалу по вертикали. Добавим также всплывающие подсказки, которые будут показывать картину и её параметры для каждой из точек:

Ниже представлена гистограмма распределения соотношений сторон.

Начиная с этого момента, следуя определению в Wolfram Language, будем считать, что
соотношение сторон = высота / ширина,
а не наоборот. Как было показано выше, Фехнер придерживался такого же определения.

Давайте теперь рассмотрим гистограмму соотношений сторон более подробно. По форме этого распределения можно сказать, что оно тримодальное. Для широких картин (ширина > высоты) соотношение будет меньше единицы, для квадратных картин соотношение будет около единицы, а для высоких картин (высота > ширины) соотношение, соответственно, больше 1. Широкие и высокие картины дают свои пики; также можно наблюдать менее выраженные локальные пики.

Не было неожиданным получить тримодальную структуру для широких, высоких и квадратных картин. В связи с этим естественным образом возникают два вопроса:

1) Каковы значения локальных пиков?

2) Какова примерная общая форма распределения (нормальное, логнормальное и т. д.)?

В 1997 году Shortess, Clarke и Shannon проанализировали 594 картины и более детально изучили окрестность точки максимума распределения. В согласии с работой Фехнера от 1876 года, локальный максимум распределения max(h/b, b/h) лежит в точке 1. 3. Число 1.3 явно отличается от золотого сечения и авторы предполагают, что, вероятно, значением этого максимума является либо число Пифагора (4/3), либо пластическое число (пластическая константа, серебряное сечение).

Пластическое число есть положительное действительное решение уравнения x³ – х – 1 = 0:

Пластическую постоянную ввёл Dom Hans van der Laan в 1928 году в качестве специального числа в контексте эстетичности трёхмерных (но не двумерных) форм. Представленная в радикалах, пластическая постоянная ℘ имеет довольно сложный вид:

«Качество» графика, полученного на основе анализа 594 картин, оказалось недостаточно, чтобы различить ℘ и 4/3, в результате чего Shortess, Clarke и Shannon предположили, что максимум соотношения сторон лежит в «платиновой константе» (введённый ими термин), значение которой приблизительно равняется 1.3. В их работе так же не были обнаружены какие-либо мелкие детали структуры графика распределения соотношения сторон.

Примечание: эта «платиновая константа» не имеет отношения к платиновому сечению, которое используется в численном анализе.

(Существует интересная математическая зависимость между золотым сечением и пластической постоянной: золотое сечение является точкой наименьшего скопления чисел Пизо, а пластическая постоянная есть наименьшее из чисел Пизо, но мы в дальнейшем не будем касаться этой связи).

Если мы уменьшим ширину прямоугольников гистограммы, то сможем увидеть по крайней мере по два максимума для широких и высоких картин:

Если мы рассмотрим интегральную функцию распределения, то сможем заметить, что число квадратных картин довольно мало. Квадратным картинам соответствует небольшой вертикальный скачок при соотношении сторон, равным единице:

Давайте теперь сравним распределения соотношений сторон высоких и широких картин; для этого инвертируем соотношения «высоких» и совместим с «широкими». Очень хорошо совмещаются максимумы в точках 0. 8 (глобальный) и 0.75 (второй максимум):

Вот как соотносятся сглаженные распределения и максимумы соотношений сторон широких и инвертированных высоких картин:

Квантильный график ниже иллюстрирует сходство наших распределений:

Можно ли получить максимумы в численной форме и ассоциировать их с какими-то конкретными числами? Ниже приведены вышеупомянутые константы и еще три дополнительные: квадратный корень из золотого сечения, 5/4 и 6/5:

Из всех возможных констант мы выбрали квадратный корень из золотого сечения по той причине, что она естественным образом появляется в так называемом треугольнике Кеплера. Соотношение его сторон равно :

Теорема Пифагора не менее важна для квадратного корня из золотого сечения. Треугольник Кеплера становится определяющим уравнением для золотого сечения:

Shortess и другие включали дробь 4/3 как пифагорейскую постоянную, поскольку это число является отношением двух наименьших сторон пифагорова треугольника с длинами сторон 3, 4, 5 (3² + 4² = 5²).

А дробь 6/5 была включена потому, что, как мы увидем в дальнейшем, это соотношение сторон часто встречается в картинах за последние 200 лет.

Распределение соотношений сторон в картинах вместе с выбранными константами показывает, что наибольший пик, вероятно, лежит в значении корня из золотого сечения, а меньший пик — где-то в диапазоне 1.32… 1.33.

Вот список констант-претендентов на точное значение максимума. Мы используем этот список при дальнейшем анализе соотношений сторон в различных группах картин. Давайте проиллюстрируем эти соотношения:

На графике ниже показаны шесть констант, расположенных на числовой прямой. Разница между пластической постоянной и 4/3 является наименьшей среди всех пар из шести выбранных констант:

Ниже представлены широкие прямоугольники с соотношениями сторон выбранных постояннных:

Для большей наглядности разместим эти прямоугольники один над другим:

А вот приведённый выше график с отмеченными на горизонтальной оси константами:

Прочие дроби с малыми знаменателями будут встречаться в различных группах картин далее, и включаться они могут согласно своим эстетическим критериям, как, к примеру, 55/45 = 11/9 = 1. (2) (см. тут, тут, тут и тут) или 27/20 = 1.35, или так называемое «мета-золотое сечение чи» — решение уравнения Χ² – Х / φ = 1 со значением 1.35…

Так как разрешение гистограммы довольно-таки ограничено, давайте подсчитаем количество картин, которые имеют определенное соотношение сторон плюс или минус небольшое отклонение. Мы можем это сделать достаточно эффективно с помощью функции Nearest:

Как мы видим, можно явно различить два максимума, больший из которых ближе к квадратному корню из золотого сечения, нежели к пластической постоянной или числу Пифагора:

Прежде чем включить в исследование большее количество художников и картин, давайте более внимательно рассмотрим распределение соотношений сторон.

Все наиболее употребимые средние значения соотношений сторон «высоких» картин больше значения соотношения сторон, на который приходится максимум:

Вот средние для «широких» картин:

Как соотносятся широкие картины с высокими? Интересно получается — их количество практически полностью совпадает:

Статистики для всех картин, рассмотренных в качестве прямоугольников (то есть соотношения сторон максимум(высота, ширина) / минимум(высота, ширина)) имеют средние, которые весьма близки к значениям для высоких картин:

Как и в рассмотренном выше графике с наложенными друг на друга распределениями, распределение высоких картин почти полностью совпадает с распределением для широких картин, в котором инвертированы пропорции. Но какое на самом деле распределение для высоких (или для всех) картин (см. вопрос 2 выше)? Если мы сгладим наше распределение, проигнорируем многочисленные малые пики и будем использовать меньшее разрешение, мы могли бы попробовать сравнить наше распределение с нормальным, логнормальным, с тяжелым хвостом (heavy-tailed distribution) и пр.

Чтобы избежать излишних шумов и артефактов, будем рассматривать лишь те картины, соотношение сторон которых меньше, чем 4:

Функция SmoothKernelDistribution позволяет сгладить несколько максимумов и получить плавное распределение (график слева). Построенные в логарифмических (log-log) координатах функция риска(f(a)/(1-F(a))) и функция 1/а дают нам намёк на то, что распределение с тяжелым хвостом есть наилучшее приближение:

Посмотрим, как можно подогнать (fit) наше распределение под нормальное и логнормальное:

А вот распределения с тяжелым хвостом:

Так как соотношение высота/ширина имеет медленно убывающий хвост, нормальное, логнормальное и экстремальное распределения (extreme value distribution) являются плохими моделями. Диапазон соотношений сторон между 1.4 и 2 явно на это указывает:

Четыре распределения с медленно убывающими хвостами в целом значительно лучше описывают наше распределение:

Если мы количественно оценим наши модели с использованием логарифмической меры сходства, то увидим, что усеченное распределение с тяжелым хвостом подходит лучше всего:

Распределение соотношения сторон имеет любопытное свойство: выше мы видели, что распределения широких и высоких картин после соответствующего преобразования очень близки по форме. Это означает, что их максимумы согласуются, по крайней мере, приблизительно. Но совмещение распределения p(x) высоких картин с 0 < x <1 и p̅(x) широких картин при 1 < x < ∞, даст нам, что p̅(x) = p(1/x)/x². Но в то же время для максимумов от p(x) и от (x) имеет место соотношение ≈1/. Интересно, что для параметров, найденных для подходящих моделей распределений это свойство выполняется с точностью в 2%. В коде ниже мы получаем различие в положении максимумов для бета-простого распределения (beta prime distribution) (результаты для устойчивых распределений почти одинаковы).

Теперь перед нами встает вопрос: как наше тримодальное распределение менялось во времени, от жанра к жанру, в зависимости от художников?

Давайте рассмотрим зависимость от времени, сгруппировав картины по векам (считаются года окончания работы над картиной). Можно заметить, что по крайней мере с четырнадцатого века, высокие картины зачастую имели соотношение сторон около 1.3, широкие картины имели соотношение сторон около 0.76, а квадратные картины стали популярны лишь сравнительно недавно. Также можно увидеть, что для высоких картин распределение имеет более плоскую форму в шестнадцатом, семнадцатом и восемнадцатом веках, если сравнивать с распределением для девятнадцатого века (мы увидим аналогичные тенденции в других подборках картин):

Медиана соотношений сторон всех картин снизилась за последние 500 лет и стала равна чуть более, чем 1. 3. (здесь мы определяем соотношение сторон как отношение длины более вытянутой стороны к меньшей стороне). Среднее также снизилось и, кажется, зафиксировалось в районе 1.35:

Для сравнения, вот распределение площадей картин (в квадратных метрах) и то, как оно менялось на протяжении веков:

Последние 450 лет медиана площади картин была весьма стабильной и равнялась примерно 2 м2:

А что можно сказать о соотношениях в различных художественных течениях? WikiGallery содержит весьма наглядную информацию о направлениях в изобразительном искусстве. Мы импортируем страницу и получим список направлений, а так же то, сколько картин в каждом из них представлено:

К сожалению, информация о размерах доступна не для всех картин. Импорт всех страниц с картинами и извлечение данных по высоте и ширине из размера миниатюр позволяет строить с той или иной точностью распределения пропорций для каждого стиля или жанра.

Подавляющее большинство направлений демонстрируют выраженные бимодальные распределения с пиками в соотношениях сторон около 1. 3 и 0.76 (направления сортируются по общему количеству картин, представленных на соответствующих страницах Wiki).

Давайте снова задействуем Википедию и рассмотрим соотношения сторон у различных художников:

И пусть общее количество картин на гистограмму теперь значительно меньше, мы всё равно можем обнаружить бимодальную (для квадратных картин пик пропал) форму распределения. И снова можно заметить выраженные максимумы в точках 1.3 для высоких и 0.76 для широких картин.

Опять-таки распределения содержат острые пики. Некоторые художники, такие как Сезанн, предпочитали стандартные размеры холста (для более подробного исследования размеров холста, которые использовал Фрэнсис Бэкон, см. здесь).

Давайте также рассмотрим более современного художника — Томаса Кинкейда, «художника света». Современные картины используют стандартные материалы и реализуются в определённых размерах и соотношениях сторон, так что форма и размер картины по большей части определяются стандартами, нежели эстетикой. Потому на этот раз мы будем ориентироваться не на текстовые данные об изображении, а на сами изображения, получая данные об их размерах исходя из их пиксельного разрешения. Даже если использовать миниатюры, распределение соотношений сторон будет вполне корректным:

В дополнение к нашему типичному максимуму ~1.3, можем наблюдать выраженный максимум около 3/2 — весьма вероятно, это артефакт стандартизации:

Приведенные выше гистограммы показывают, по крайней мере два максимума для высоких картин, а также два максимума для широких картин, с большим пиком рядом с квадратным корнем из золотого сечения. Поскольку мы не знаем, каковы были критерии отбора для художественных работ, включенных в

«Artwork»

— области

Entity

, — мы должны проверить нашу гипотезу на некоторых независимых подборках картин.

Доступным источником по размерам картин являются музейные каталоги. Различные старые каталоги, похожие на те, которыми пользовался Фехнер, доступны в отсканированных и распознанных формах. Вот примеры:

Мы просто импортируем из каталогов тестовые распознанные версии. В различных каталогах длина и ширина картин могут представляться по разному, однако в пределах одного каталога обычно эти параметры содержатся в одном виде. В результате, посмотрев на то, в какой форме представляются данные, не представляется сложной задачей извлечь данные о размерах с помощью строковых шаблонов.

Каталог музея Кайзера Фридриха (ныне Музей Боде):

Каталог из Пинакотеки в Мюнхене (ныне Старая Пинакотека):

Каталог из музея der bildenden Künste zu Stuttgart (ныне Государственная галерея Штутгарта):

Каталог из Gemäldegalerie в Дрездене (ныне Галерея старых мастеров Дрездена):

Каталог Gemäldegalerie zu Cassel (ныне Neue Galerie Kassel):

Для всех пяти музеев результаты весьма схожи:

Добавим новые данные из этих пяти каталогов и построим всё это вместе константами, обозначенными вертикальными линиями:

И снова мы наблюдаем два глобальных максимума в распределении соотношений сторон. Для высоких картин мы получаем довольно ровный максимум, без четко прослеживающихся локальных минимумов.

(Сайт archive.org содержит и более старые каталоги живописи, например, каталоги Schloss Schleissheim, коллекции Бертольд Захарии, коллекции Национальной галереи Баварии и многие другие. Распределения соотношений сторон картин в этих каталогах очень похожи на те, что мы сейчас анализируем).

Известной коллекцией живописи является

коллекция Кресса

. Отдельные изображения находятся во многих музеях в США. Но, к счастью (для нашего анализа), данные по находящимся в каталоге картинам доступны в четырех подробных каталогах в виде

PDF документов

— в сумме это около 900 страниц описания картин. (Большая часть данных, анализируемых в этой статье, соответствует исключительно произведениям западного искусства. Касательно восточных предпочтений в искусстве — можно посмотреть недавнюю работу

Zheng, Weidong и Xuchen

).

Импортировав PDF файлы в текстовой форме и выудив оттуда значения соотношений, мы получим около 700 новых точек. (С этого момента я больше не буду приводить код импорта данных с различных сайтов; зачастую время загрузки всех данных очень велико, и повторить загрузку по-быстрому не получится).

В этот раз мы наблюдаем локальные максимумы вблизи корня из двух и золотого сечения.

Для того, чтобы удостовериться в существовании явных максимумов и их положений в распределении соотношений сторон, давайте рассмотрим эти распределения по известным мировым музеям.

Музей искусства Metropolitan имеет отличный онлайн-каталог. Задав критерий поиска для картин как «холст и масло», мы можем извлечь их пропорции.

На этот раз, глобальный максимум, кажется, немного не доходит до 1.27:

Институт искусств Чикаго имеет удобный поиск, который позволяет найти, к примеру, картины, сделанные в период с 1600 по 1800 гг. Полученные данные дают нам ещё около 1200 точек, а глобальный максимум находится очень близко к корню из золотого сечения:

Сайт Эрмитажа весьма удобен для анализа и содержит информацию о 3400 картинах из своей коллекции. Анализ соотношений сторон снова показывает два различных максимума для высоких картин:

Наша четвёртая коллекция для анализа — картины из Национальной галереи. Распределение заметно отличается от предыдущих:

Относительно необычное распределение идет вместе со следующим распределением возраста картин. В этой коллекции мы видим максимум на картинах 16-го века, что сильно её отличает от других:

Рейксмюзеум в Амстердаме представляет еще одну обширную коллекцию старых картин. Вот распределение соотношения сторон для 4600 картин из этой коллекции:

В шестом примере рассмотрим картины из коллекции Тейта. Большая часть из 8000+ картин коллекции Тейта являются относительно новыми. Вот их распределение по годам:

Распределение соотношений сторон весьма хорошо, но не идеально, соотносится с нашими константами:

А с наложением таких дробей, как 6/5, 5/4, 9/7, 4/3 и 3/2, мы получим хорошие приближения локальных максимумов для высоких картин (тут мы используем чуть меньший размер столбца диаграммы для лучшего разрешения).

Использование основанных на Nearest решений с лучшим разрешением в пределах небольшого диапазона показывает, что максимумы ширин и высот картин лежат на рациональных числах 6/5, 5/4, 9/7, 4/3, 3/2, и их обратных (мы используем округление соотношения сторон до 0.01).

Существует небольшая зависимость в положениях пиков от размера зазора, используемого в Nearest:

Обратите внимание, что мы указывали вертикальные линии на дробях в приведенном выше графике. В пределах 1% от 9/7 мы находим квадратный корень из золотого сечения и такой дроби, как 14/11. Таким образом, решить, какое из чисел является реальным максимумом с текущими данными и точностью не представляется возможным:

Коллекцию Тейта выделяет кое-что уникальное, и это кое-что является очень важным в нашем исследовании. Вот два примера с данными по этой коллекции:

Обратите внимание на очень точные измерения размеров картин, вплоть до миллиметров. То есть этот набор данных является очень надёжным, а кривая в распределении соотношения сторон даст нам очень точные значения максимумов.


Национальная портретная галерея

содержит десятки тысяч портретов.

Не представляет сложности импортировать отдельные веб-страницы вместе с размерами:

Неудивительно, что портреты имеют в среднем значительно более равномерное соотношение сторон, нежели пейзажи, картины охотничьих, военных и прочих тематик. На этот раз мы получаем значительно более унимодальное распределение. Ниже приведена гистограмма для примерно 45 000 соотношений сторон:

Увеличив область максимума, мы сможем увидеть, что очень большая часть имеет соотношение сторон 6/5. Второй максимум приходится на 5/4, а третий на 4/3:

В то время как золотое сечение чаще используется для центральной части лица человека (см., например, здесь, здесь и здесь), большинство портретов изображают всю голову человека. Учитывая, что среднее соотношение высота/ширина человеческого лица (за исключением ушей и волос), равняется 1.48, наблюдаемый максимум при 1,2 не кажется неожиданным. Для более детального исследования лиц в живописи рекомендую посмотреть де ла Роса и Суарес.

Проанализированный набор данных пока что не позволяет точно определить положение максимума. Тому есть две причины: мало картин в наборах данных и размеры картины часто недостаточно точны. Так давайте возьмем бОльший набор.

Веб галерея изящных искусств

— венгерский сайт, который дает возможность

загрузить набор данных по картинам в виде таблицы

файлом формата CSV.

Файл использует точку с запятой в качестве разделителя, так что мы должны извлекать столбцы написав свой парсер, а не с помощью Import:

Нам доступны ледующие данные:

А вот как выглядит обычная запись. Размеры в формате высота х ширина:

Большинство из приведенных произведений, к счастью, картины:

Извлекая картины с данными по размерам (не все картины содержат информацию о размерах), получаем 18 800+ точек данных:

Построив все длины и ширины из набора данных, получим следующую диаграмму:

Округлив значения до одного сантиметра, мы получим следующую гистограмму для всех ширин и длин. Можно заметить многочисленные выраженные пики и дискретные длины:

Диаграмма фактических размеров картин показывает, что многие картины менее, чем 140 см в высоту и/или ширину:

Контурный график сглаженной версии двумерного распределения плотности ширин и высот содержит два выраженных «хребта» для широких и высоких картин:

Глядя на значения длин можно заметить числа, кратные 5 см и 10 см, однако большая часть чисел не выглядит так, как будто значения после измерений округляли:

Следующая иллюстрация показывает то, как изменялись наиболее распространенные длины и ширины картин с течением времени:

Построив ширины и высоты, отсортированные по векам, можно заметить, что многие из самых высоких пиков берут своё начало в девятнадцатом веке. (Обратите внимание на гораздо меньшую вертикальную шкалу для картин из двадцатого века.)

Для последующего сравнения нам понадобится получить модель распределения ширин картин. Округлим значения с точностью до 5 см для того, чтобы избавиться от локальных пиков:

Покажем распределения возрастов картин из этого набора данных (в оригинале статьи приложена неверная картинка (дубль предыдущей), что было исправлено — прим. ред.):

Проанализируем этот набор данных, построив все соотношения сторон вместе с их кратными числами:

Чтобы иметь возможность представить очень близкие кратные числа соотношений сторон, выберем ширину столбца гистограммы равной 0.02:

Давайте теперь представим каждое соотношение в виде некоторой дроби таким образом, чтобы ошибка составляла менее одного процента. Как будут распределены подобные аппроксимирующие дроби? Следующий график представляет распределение на логарифмической оси. Интересно отметить, что большая часть картин в соотношениях максимум(ширина/высота) / минимум(ширина/высота) и минимум(ширина/высота) / максимум(ширина/высота) часто содержат знаменатели 3, 4 и 7, а 6 и 18 практически отсутствуют:

Для сравнения, вот соответствующие графики для 20 000 равномерно (в промежутке [0,2]), распределенных чисел:

Вот функции распределения картин с выбранными соотношениями сторон:

Если построим доли картин с соответствующими соотношениями сторон от общего числа картин, то мы по прежнему будем видеть увеличение картин с соотношением сторон 5/4, притом доли остальных картин существенно не меняются:

Если не брать значения размеров как точные, а предположить, что они являются точными лишь до ± 1%, то мы получим совсем другую картину. На следующем рисунке показано распределения картин с заданным значением точного значения соотношения сторон картин с принятым нами отклонением. В 16-ом веке все основные соотношения сторон были распространены примерно одинаково. Можно заметить, что соотношения 5/4, 4/3 и 9/7 стали заметно более популярными в 17-ом веке. А пропорции, близкие к золотому сечению, поубавили популярности с 13-го века. Данный график не чувствителен к процентному изменению ширины; изменения до ± 5% дадут весьма близкие результаты.

Так что можно сказать о знаменателях в наиболее распространенных соотношениях? Сформируем все дроби с максимальным знаменателем 16 и отобразим все соотношения к ближайшим из этих дробей. Из-за неравномерных промежутков между выбранными рациональными числами нам следует привести число соотношений сторон, соответствующих каждой из дробей, в соответствии с расстоянием до ближайшей меньшей и большей дроби. График дает представление о встречающихся соотношениях, что является дополнением к построенной гистограмме. В гистограмме используются столбцы равной ширины; а в следующем ниже графике используются неравные столбцы, и прилегающие минимумы и максимумы не могут перекрывать друг друга. Опять-таки, 5/4 и 4/5 — лидеры общего соревнования:

Мы снова воспользовались функцией Nearest для построения подробного распределения соотношений сторон. Следующая функция windowedMaximaPlot строит распределение либо в трёхмерном пространстве, либо как контурный график с регулируемым временным окном:

Вот трёхмерный и контурный графики:

Последние два изображения указывают на несколько примечательных особенностей:

  • Последние 400 лет высокие картины часто имеют соотношение сторон около 1.2.
  • Наиболее распространенное соотношение сторон для широких картин поменялось в середине 18-го века, а относительно широкое распределение содержит несколько выраженных максимумов, например в 0.8.
  • Квадратные картины начинают набирать популярность с начала 19-го века.

Labreuche

рассуждает о процессе стандартизации полотен. Во Франции первая стандартизация произошла в семнадцатом веке, а вторая — в девятнадцатом (о недавних временах и с большим количеством математики см. работу

Dinh Dang

).

Simon

обсуждает стандартизацию холста в Великобритании.

Вот размеры для некоторых стандартизированных французских полотен девятнадцатого века. Данные в формате
{ширина, {высота портрета, высота пейзажа, высота марины (морского пейзажа)}}:

Соотношения сторон (максимум(высота/ширина, ширина/высота)) для всех полотен имеют следующее распределение:

Нелегко найти большие и точные наборы данных по размерам старых картин. С другой стороны, различные веб-сайты имеют десятки тысяч изображений картин как в JPG, так и в PNG. Может, соотношения сторон стоит просто посчитать через соотношения количеств пикселей по ширине и высоте? Выше мы видели, что большинство картин измеряется с точностью до примерно одного сантиметра. Со средней высотой и шириной картин около одного метра мы получаем погрешность около 2%. Даже уменьшенные изображения размером в приблизительно 100 пикселей или в ширину/высоту в несколько сотен пикселей. Таким образом, можно было бы снова ожидать результатов, верных в точности до 1..2%. Но нет никакой гарантии, что изображения не были обрезаны, что рамка была включена в размер, имеются или нет граничные пиксели. Веб-галерея искусств имеет, в дополнение к фактическим размерах картин, их изображения. После загрузки изображений и расчета соотношений сторон попробуем сравнить их с соотношениями, рассчитанными на основе реальных высот и ширин картин. Вот итоговое распределение двух соотношений (картин и их изображений) вместе, а также модель данного распределения, представленная как CauchyDistribution[1.003, 0.019]. Среднее значение от двух пиксельных измерений — 1.036, стандартное отклонение — 0.38. Эти числа показывают, что ошибка от использования изображений для определения соотношения сторон является слишком большой для того, чтобы надлежащим образом передать мелкомасштабную структуру распределения:

В данных dataWGA хранится информация и о художниках. Меняется ли среднее соотношений размеров в картинах в течение жизни художника? Вот распределение соотношений картин по ходу жизни художников:

Мы можем увидеть общий шаблон изменения среднего соотношения сторон для картин художника в зависимости от его возраста. Первые картины статистически имеют более экстремальные пропорции. В конце первой трети жизни соотношение сторон минимально, а в конце второй трети соотношение сторон максимально (левый график). Совокупное среднее соотношение сторон показывает минимум на ~0.4 от продолжительности жизни живописцев (график справа). Оба графика показывают максимум(высота/ширина, ширина/высота), разделенный на среднее значений всех соотношений сторон. (Связь творчества и возраста обсуждается здесь).

Читатель при желании может самостоятельно провести более точные замеры некоторых картин; тем временем, проведем некоторые расчёты с данными по веб-галерее изящных искусств. Давайте также рассчитаем и визуализируем распределение картин по миру. Мы берем текущие города, в которых находятся картины (которые содержат данные о ширине и высоте), как их положения, берем среднее от всех картин в этом городе и представляем максимум(высота/ширина, ширина/высота) как функцию от города. Неудивительно, что большинство крупных коллекций картин не сильно отклоняются от медианы 1.333. Чтобы найти города и работать с их локациями, будем использовать функцию Interpreter:

Давайте более пристально исследуем значения ширины и высоты. Если построить диаграмму для дробных долей сантиметров, то мы ясно видим, что подавляющее большинство картин измеряются с точностью менее 1 см. Лишь около 10% от всех картин содержат данные о размерах, указанные в миллиметрах (и некоторые из тех, что указаны с точностью до 5 миллиметров, вероятно, также округлены):

Давайте более пристально исследуем значения ширины и высоты. Поскольку большинство картин были написаны до введения сантиметра в качестве единицы измерения, популярные размеры в живописи, вероятно, не должны быть кратны сантиметру. Это означает, что измеренные значения высот и ширин не являются фактическими значениями. Утешает лишь весьма однородное распределение миллиметровых частей размеров картин, которые были измерены с точностью до миллиметра.

Во многих проанализированных наборах данных ширины и высоты картины представляются в виде целых чисел и в сантиметрах. (Явное исключение — набор данных из коллекции Тейта, в которой практически каждая картина измеряется в точности до миллиметра). Поскольку ширины и высоты большинства картин в том же порядке, что и 100 см, для точного определения соотношения сторон округление до сантиметра — операция ощутимая. Сколь много из наблюдаемых максимумов для различных дробей с малыми знаменателями являются следствием неточных значений ширин и высот?

Давайте смоделируем этот эффект. Функция aspectRatioModelValue моделирует соотношения сторон картин. Мы предполагаем устойчивое распределение ширин и то, что распределение высот есть нормальное распределение со средним значением 1. 3 xwidth. И мы будем моделировать только высокие картины, ограничивая высоту так, чтобы высота была не меньше ширины:

Теперь мы «вырежем полотна» для высоких картин и посмотрим на распределение пропорций. Мы проделываем это дважды для каждого из 100 000 полотен. Верхний график содержит распределение, полученное при использовании размеров в точности до миллиметров. График ниже показывает, что в 65% всех случаев измерения точны до сантиметра, в 25% до половины сантиметра, и 10% — до миллиметра. На каждый из результатов трех вычислительных экспериментов наложим гистограмму результирующего распределения:

Сравнение верхнего и нижнего графиков говорит нам о том, что распределение соотношения сторон достаточно гладкое в случае, если измерения точны до миллиметра. Нижнее распределение содержит артефакты, вызванные точностью измерения до сантиметров.

Глядя на довольно гладкую гистограмму для значений миллиметровой точности и вышеприведенную гистограмму соотношений сторон коллекции Тейта можно заметить, что частые появления соотношений, представимых в виде простых дробей — реальный эффект. В то же время, как показано в вышеприведенном эксперименте с весами {0,65, 0,25, 0,10}, округление до сантиметров искусственно усиливает влияние некоторых простых дробей, таких как 6/5, 5/4, и 3/2.

Еще более простой способ продемонстрировать влияние ошибок округления при измерениях соотношений сторон в наборе данных веб-галереи изящных искусств — самим поменять значения ширин и высот. К каждому целочисленному размеру добавим от -5 мм до 5 мм чтобы сымитировать более точное измерение. Опять-таки, в качестве соотношения сторон будем использовать отношение большей стороны к меньшей:

Наложим теперь первоначальное распределение на изменённое — то, где мы меняли значения ширин и высот. Мы видим, что максимумы на некоторых рациональных соотношениях сильно подавляются, однако глобальный максимум около 5/4 не меняет своего положения, второй максимум — 4/3 — также стабилен, равно как и малый первый максимум — 6/5. В то же время пики на 3/2 и 2 сильно теряют в высоте:

Сделаем всё в обратной последовательности с набором данных коллекции Тейта: округлим все ширины и высоты до сантиметра. Опять же, построим изначальное распределение соотношений сторон вместе с измененным:

В то время как высоты локальных пиков изменились, самые крупные пики по-прежнему присутствуют, притом весьма выражено.

Давайте рассмотрим еще один крупный веб-ресурс —

WikiArt.

Для вычислительных задач этот сайт структурирован очень удобно. Мы имеем

список из 900+ художников

с гиперссылками на страницы с их произведениями. Каждая картина имеет свою страницу, которая содержит удобно структурированную информацию. Вот, к примеру, информация о картине

Мона Лиза:

Отметим, что приведенные выше данные содержат информацию о стиле и жанре. Это предполагает использование набора данных WikiArt для поиска возможных зависимостей форматов от жанра (стили мы уже рассматривали выше).

В наборе данных имеется около 7000 картин с информацией об их размерах. Для краткости, все данные были закодированы в виде одного черно-белого изображения:

Картины с информацией о размерах имеют следующее распределение по их возрасту. Можно заметить преобладающее количество картин из восемнадцатого и девятнадцатого веков:

На основании полученных ранее результатов можно ожидать, что этот набор данных, в котором преобладают картины последних полутора веков, будет иметь явные пики на соотношениях сторон, которые соответствуют некоторым дробям. Представленное ниже распределение с вертикальными линиями на 6/5, 5/4, 4/3 и 3/2 подтверждает эту гипотезу:

Жанр, очевидно, тесно связан с форматом картины — будет ли она широкая, квадратная или высокая. Вот соотношения долей широких, квадратных и высоких картин для различных жанров:

Давайте теперь рассмотрим распределение соотношений сторон как функцию от жанра:

С помощью функции TimelinePlot, изобразим диапазоны второго и третьего квартилей соотношений:

Высокие картины в пейзажах встречаются гораздо реже, чем широкие. Но даже если мы под соотношением сторон будем подразумевать отношение длинной стороны к короткой, то мы по-прежнему будем видеть четкую зависимость пропорций от жанра.

Жанр часто также влияет и на сам размер картины. Вот второй и третий квартили в соотношениях сторон и площадях для различных жанров (в приложенном документе Mathematica эта картинка интерактивна: наведите курсор на непрозрачный прямоугольник, чтобы увидеть жанр):

Если мы разделим каждый жанр по стилям, то получим более мелкозернистую структуру распределения соотношений сторон. Выберем 50 самых популярных жанров и стилей, каждый из которых должен быть представлен по крайней мере пятьюдесятью картинами:

Неоклассические картины в стиле ню выделяются наибольшим средним соотношением сторон (около 1.86):

А вот более подробная диаграмма, показывающая средние соотношения сторон для различных стилей и жанров, которые содержат по крайней мере пять картин. (Наведите курсор на вертикальную колонну, чтобы увидеть жанр и пропорции.)

Как мы увидели выше, коллекции живописи в несколько тысяч картин выдают несколько максимумов в распределении соотношений сторон в диапазоне 1. 24 — 1.33. Давайте рассмотрим теперь второй по счету большой набор данных.

Каталог французских национальных музеев Joconde содержит описания более полумиллиона предметов искусства. Поиск по картинам дает ~67000 результатов. Не все из них те картины, что вешают на стену; коллекция также включает в себя картины на фарфоровых фигурках и других поверхностях. Итого ~31000 картин с явно заданными размерами. Так как информация о картинах исходит от нескольких музеев, размеры могут быть представлены в различных форматах. Для извлечения размеров потребуется некоторое время.

Интересно, что тут мы получаем новый максимум, равный ~1.23.

Отображение распределения широких изображений на оное для высоких изображений с заменой высоты на ширину показывает, что два максимума совпадают очень хорошо. Таким образом, соотношение 5/4 (или 4/5) — наиболее популярное:

В коллекции высоких картин на ~11% больше, чем широких.

Очень большую базу данных по картинам итальянских католических церквей можно найти

здесь.

Поиск

картин, написанных маслом

, дает 130 000 результатов, из которых 124 000 содержат данные по ширине и высоте.

Коллекция содержит много относительно новых картин (шестнадцатого века ≈4%, семнадцатого века ≈23%, восемнадцатого века ≈36%, девятнадцатого века ≈24%, двадцатого века ≈13%).

Вот какое распределение получается. Покажем распределение вместе с линиями на 1, 6/5, 5/4, 4/3, 7/5, 3/2, 5/3 и 2. Эти линии на удивление хорошо согласуются с положениями максимумов:

График явно указывает на существенное преобладание высоких картин над широкими. И все максимумы приходятся на дроби с малыми знаменателями. И это при том, что лишь около 8% из общего числа картин измерены с погрешностью менее половины сантиметра.


Смитсоновский музей американского искусства

имеет сайт, с помощью которого можно исследовать большое количество картин. Около 286000 картин содержат информацию о размерах. Вот полученное распределение пропорций:

Как было отмечено, выраженные пики на рациональных дробях чаще наблюдаются для картин последних 200 лет. Вот график распределения возрастов картин из этой коллекции, который это подтверждает:

Третий большой набор данных почерпнем с британского сайта

Your Paintings

, который представляет

200000+ картин,

56000 из которых имеют данные о ширине и высоте.

В отличие от предыдущих наборов данных, многие из картин этой коллекции моложе 150 лет. Получается, преобладание новых картин должно поменять распределение соотношений сторон?

Мы снова наблюдаем ярко выраженный максимум. Пять наиболее выраженных максимумов для высоких картин приходятся на дроби с малыми знаменателями. Изобразим в качестве вертикальных линий числа 6/5, 5/4, 9/7, 4/3, 3/2 и их обратные значения. Для широких картин мы видим те же (то есть инвертированные) позиции максимумов, что и для высоких картин:

Отличная новость — 52% всех размеров задаются точнее, чем в сантиметрах. Это означает, что видимые максимумы — не просто дефекты округления, а картины и правда чаще имеют соотношение сторон, выражаемое в виде дроби с малым знаменателем.

А вот график числа картин с более высоким разрешением и с максимальной дистанцией от заданного соотношения сторон, равной 0.01:

Последний раздел с британскими картинами за последние 150 лет показывает четкую тенденцию к использованию в качестве соотношения сторон рациональных чисел с малыми знаменателями. Возникает вопрос: какое соотношение наиболее популярно в наши дни?

Нет такого музея, который имеет тысячи картин последних лет (по крайней мере, я не смог такого найти). Итак, давайте обратим внимание на дилеров современных картин (нескольких последних десятилетий). После некоторых поисков я вышел на Saatchi Art. Поиск по картинам, написанных маслом, выдал 96000 картин. Итак, какие у них соотношения? Вот график с распределением их пропорций. Вертикальные линии проведены на значениях 1, 6/5, 5/4, 4/3, 3/2, 2, и соответствующих им обратных значениях. Обратите внимание, что на этот раз мы используем логарифмическую вертикальную шкалу:

В самом деле, все тенденции, которые были заметны в наборе данных Your Paintings, стали еще более выраженными:

  • еще большая доля квадратных картин,
  • выраженные максимумы на соотношениях сторон, которые есть рациональные числа с малыми знаменателями — как для широких, так и для высоких картин,
  • почти равное количество широких и высоких картин.

Максимумы в определенных соотношениях отражаются на распределении площадей картин — наблюдается несколько десятков выраженных значений:

Можно предположить, что они вызваны размерами промышленно изготовленных полотен. Чтобы проверить это предположение, проанализируем имеющиеся в продаже картины магазина Dick Blick:

Построенное распределение площадей для ~1600 полученных картин имеет те же ключевые черты, что и указанное выше распределение:

На построенном с помощью aspectRatioCDFPlot представленном выше распределении можно заметить наиболее распространенные пропорции, которые проявляются в виде вертикальных сегментов:

И пусть невозможно купить картины в музее, их можно купить в Saatchi. Таким образом, для этого набора данных мы можем рассмотреть вопрос связи между ценой и соотношением сторон. (Для различных статистических данных по ценам и качественным свойства картин см. Reneboog и Van Houtte, Higgs и Forster и Bayer и Page. )

Данные не указывают на явную зависимость цены картины от её соотношения сторон:

В то же время наблюдается слабая корреляция между ценой и площадью по закону . (Для детального изучения отношения площадей к ценам корейских картин см. Nahm).

Ранее мы рассмотрели соотношения сторон картин из различных музейных коллекций. В последнем разделе мы рассмотрели соотношения сторон картин, представленных к продаже. А что можно сказать о пропорциях недавно проданных картин?

Сайт Artnet

— отличных источник информации о проданных на аукционах картинах. Он содержит около 590000 картин с информацией о размерах.

В то время как картины, проданные с аукциона, могут быть и средневековыми, всё-таки большинство относятся к современным. Вот кумулятивное распределение картин за последнее тысячелетие. Обратите внимание на то, что вертикальная ось — логарифмическая. Мы видим распределение по принципу Парето — 90% всех проданных на аукционе картин сделаны после 1855:

Основываясь на нашем предыдущем анализе, можно ожидать, что набор данных со столь большим количеством относительно новых картин будет иметь сильные и выраженные пики на рациональных числах с малыми знаменателями, плюс ожидается много квадратных картин. И это действительно так, и это подтверждает представленный ниже график. Построим распределение вместе с вертикальными прямыми на 5/6, 4/5, 3/4, 2/3, 5/7, 7/10 и обратных им:

Даже на логарифмической шкале пики на этих значениях все еще ясно видны:

Относительное число картин с соотношением сторон, близким к некоторым простым дробям, увеличивается с течением времени. Для соотношений сторон из интервала [1.1, 1.4] построим абсолютное значение разности между функцией распределения вероятности и её сглаженной версией (с радиусом сглаживания в 0,01). Хорошо видны относительные увеличения максимумов на 6/5, 5/4, 4/3:

Картины из этого набора данных по большей части написаны маслом. Однако интересно было бы сравнить распределения соотношений сторон картин, написанных маслом, акварелью, акрилом. Акрил используется лишь с семидесятых, поэтому пики на дробях с малыми знаменателями становятся еще более выраженными. Распределение соотношений сторон для туши имеет совершенно другую форму — возможно, из-за форматов бумаги:

Большое количество картин сильно увеличивает вероятность нахождения картин с экстремальными пропорциями. Имеются даже соотношения, меньшие 1/10 и большие 10. Примеры очень широких картин: Hussainbad Imambara Complex, Makimono scroll of river scenes, Sennenstreifen. Примеры очень высоких картин: La salive de dieu, Pilaster, Exotic rain.

Если мы посмотрим на кумулятивное распределение всех картин, которые делятся на широкие, высокие и квадратные, то мы видим, что с 1825 года широкие картины становятся все более популярными. Можно также заметить увеличение количества квадратных картин после 1950:

Большое количество картин в этом каталоге вместе с возникновением выделяющихся пропорций в этом наборе данных позволяют предложить, что мы должны применять ту же модель распределения для всех соотношений максимум(высота/ширина, ширина/высота). Используя данные (которых значительно меньше) из встроенной бызы данных «Artwork» (изящных искусств), мы предположили, что распределение пропорций хорошо аппроксимируется устойчивым распределением. Попробуем найти модель для нашего распределения. Синяя кривая, представляющая распределение, была получена сглаживанием с шириной 0.1:

Сайт известного аукционного дома Sotheby имеет базу данных с возможностью поиска из более чем 100000 картин, которые продавались в последние 15 лет. Проверим теперь, имеется ли зависимость между ценой и соотношением сторон. Вот финальные цены проданных картин в зависимости от соотношений сторон:

Аналогичным образом, прямой связи между ценой с молотка и площадь картины не наблюдается:

Распределение аукционных цен интересно само по себе, однако мы не будем на это отвлекаться и продолжим фокусироваться на соотношениях сторон:

Практически все картины, которые мы рассматривали, были написаны западными художниками. Но что можно сказать о Востоке? Оказалось, что гораздо труднее найти базу данных восточных картин. Самая обширная из тех, что мне удалось найти —

каталог китайской живописи в университете Токио

.

Веб-страницы весьма удобно структурированы и мы можем легко их импортировать. Вот пример:

Типичный ввод данных с размерами:

В базе данных содержится ~10500 картин с размерами. Вот распределение соотношений сторон:

Распределение заметно отличается от оного для западных картин. Наиболее выраженные максимумы в положениях 1/3 и 2. Для более детального изучения китайской живописи см. Zheng, Weidong и Xuchen. Тут можно найти другую, меньшую онлайн коллекцию китайской живописи.

Художники предпочитают определенные соотношения сторон для картин исходя из эстетических соображений; возможно, схожие шаблоны проявляются во многих объектах современного мира.

Продукты из супермаркета

Давайте рассмотрим различные продукты из супермаркета. В конце концов, они своим видом напрямую обращаются к потенциальным клиентам. Сайт

ItemMaster

имеет список десятков тысяч разных продуктов (там требуется регистрация).

Вот, снова гистограмма соотношений высота/ширина. Многие упаковки продуктов — квадратные (и этот тренд значительно выраженнее, чем для картин). И наиболее распространенное соотношение высота/ширина очень близко к 3/2:

(См. Raghubir и Greenleaf, Salahshoor и Mojarrad, Ordabayeva и Chandon и Кох для более подробного знакомства с оптимальными формами упаковки с эстетической точки зрения, а не с производственной).

Винные этикетки

После быстрого взгляда на размеры упаковок, думаю, логичным будет исследовать этикетки на продуктах. Трудно найти их явно заданные размеры, однако с их изображениями проблем не возникает. Ранее, при анализе данных веб-галереи изящных искусств, мы выяснили, что анализ размеров изображений, а не оригиналов, даёт определенную погрешность. Это означает, что мы не сможем построить точный график распределения пропорций этикеток, однако анализ их изображений позволит получить общее представление о распределении. Рассмотрим этикетки красных вин и немецких сортов пива. Сайт

wine.com

содержит около 5000 этикеток красного вина:

Интересно, что распределение пропорций винных этикеток не так уж и отличается от распределения картин. У нас есть широкие, высокие и квадратные этикетки:

Этикетки немецких сортов пива


Сайт Catawiki

содержит около 2700 этикеток немецких сортов пива. Несколько минут, и мы получим ширины и высоты всех пивных этикеток:

Распределение пропорций этикеток пива заметно отличается от винных. Большинство пивных этикеток почти-что квадратные:

Логотипы продуктов питания

Обобщим и включим последние два набора данных в продукты питания. Сайт

brandsoftheworld.com

содержит ~9000

логотипов продуктов питания и напитков

. Вот распределение их соотношений сторон. Мы ясно видим, что большинство логотипов либо широкие, либо квадратные. Есть и высокие логотипы, но их намного меньше, чем широких:

Банкноты

Что можно сказать о том, что мы используем, чтобы заплатить за продукты — о банкнотах? Банкноты доступны через фреймворк

Entity,

и мы можем быстро проанализировать соотношения сторон для ~800 банкнот, которые в настоящее время используются в разных странах:

Практически все современные банкноты широкие, потому мы видим лишь соотношения, меньшие единицы. И большинство банкнот ровно в два раза больше в ширину, чем в высоту:

Размеры автомобилей

Если есть достаточно купюр, то можно купить хороший автомобиль. Итак, каковы распределения соотношений сторон автомобилей? Включив около 3600 моделей автомобилей 2015 года, получим следующие распределения:

Вот некоторые из автомобилей с малыми и большими пропорциями высота/длина:

В распределении высот автомобилей отчётливо видна бимодальность. В то время как распределения длин и ширин машин унимодальны, высота показывает два четких максимума. Автомобили с высотой более 65 дюймов — в основном внедорожники и кроссоверы. Кроме того, очень маленькие автомобили средней высоты, но с длиной ниже среднего, образуют пик в соотношении высота/ширина вблизи 1/3:

Бумажные листы

Банкноты делаются из подобных бумаге материалов. Каковы же соотношения наиболее популярных форматов бумаги? Страница в Википедии о размерах бумаги содержит 13 таблиц популярных

форматов бумаги

. Не представляет труда импортировать таблицы и извлечь столбцы таблиц, содержащие данные по ширине и высоте (в миллиметрах):

Также получаем распределение пропорций. Неудивительно, что мы видим четкую кластеризацию пропорций рядом с 1.41 — примерным значением — соотношением, на котором базируется большинство форматов, стандартизированных ISO. А наиболее распространенное соотношение — 4/3:

Марки

Что это может быть — похожее на картины, прямоугольное и самых разных видов? Конечно, это марки — эдакие мини-картины. Сайт

Colnect

содержит данные о 500000+ марок. Если мы ограничимся

французскими марками

, выпускаемыми с 1849 по 2015, то мы получим ~6000 марок для анализа. Чтение данных занимает несколько минут:

Вот кумулятивное распределение пропорций марок:

Наконец, мы нашли что-то, для чего распределение соотношений сторон имеет максимум, близкий к золотому сечению. Вот самые популярные соотношения сторон:

Изменение среднего соотношения сторон (макс(ширина, высота)/мин(ширина, высота)) указывает на изменение стиля французских марок с течением времени. Рассмотрим также, как площадь марок менялась с течением времени (в см²). Совершенно очевидно, что марки с годами становились всё больше:

Эмблемы команд NCAA (Национальной ассоциации студенческого спорта)

Многие любят смотреть спортивные состязания, особенно командных видов спорта. Эмблемы команд часто находятся на самом виду. Давайте рассмотрим спортивные команды из двух областей: из NCAA и немецких футбольных клубов. Используемые ранее эмблемы можно найти

здесь

, а текущие —

здесь

.

Вот распределение соотношений (высота/ширина) эмблем команд NCAA. Интересно — наблюдается максимум на ~0,8, как и на некоторых распределениях для картин:

Эмблемы немецких футбольных клубов

Вот распределение соотношений (высота/ширина) для 1348 эмблем немецких футбольных клубов. Мы видим ярко выраженный максимум для квадратных эмблем и локальный максимум для высоких эмблем с соотношением сторон 1.15:

Форматы фильмов

Закончим наш предпоследний раздел для соотношений сторон прямоугольных объектов, рассмотрев эволюцию форматов фильмов. Сайт

filmportal

содержит список из 85000 немецких фильмов, сделанных за последние 100 лет. 27000 из них имеют данные о соотношении сторон и длительности — около трёх лет непрерывного просмотра кино. На рисунке ниже показано кумулятивное распределение пропорций в кино за длительное время. Получается, что около двух третей из всех когда-либо выпущенных фильмов имеют соотношение сторон ~4/3. И только в 60-х появилась тенденция снимать широкоформатное кино:

Исследуем эволюцию пропорций фильмов крупных студий США (Warner Bros., Paramount Pictures, Twentieth Century Fox, Universal Pictures и Metro-Goldwyn-Mayer) за последние 100 лет. Соотношение сторон около 4/3 стало преобладать после 1955, а сегодня среднее соотношение — около 2.18:


Подводя итог: мы проанализировали соотношения сторон для большого количества коллекций живописи — 1000000+ картин по количеству и за тысячелетие по времени.

Используя комбинацию встроенных и источников данных из интернета, мы получили следующие качественные выводы:

  • Количество широких и высоких картин приблизительно равно для разных коллекций.
  • С ХIХ века широкие картины популярнее высоких.
  • Распределение широких картин может быть точно определено как обратное распределение высоких картин.
  • Распределения соотношений сторон во многих коллекциях содержат (как для высоких, так и для широких картин) по крайней мере два четко различимых глобальных максимума: около 1.3 и около 1.27 (и их обратные величины для широких картин).
  • Начиная с восемнадцатого века соотношения сторон, выражаемые через дроби с малыми знаменателями, становятся всё более популярными, и эта тенденция продолжается до сих пор; сроки совпадают с французской стандартизацией размеров холста.
  • Распределения соотношений сторон картин 19 и 20 веков содержат выраженные максимумы на значениях 6/5, 5/4, 9/7, 4/3 и 3/2.
  • В целом, распределение соотношений сторон больших коллекций картин хорошо описывается альфа-устойчивым распределением Леви, а это означает, что распределение имеет тяжелые хвосты.
  • Золотое сечение не является соотношением, сколь нибудь популярным для картин (золотое сечение в архитектуре — см. Shekhawat, Huylebrouck и Labarque, Birkett и Jurgenson и Foutakis).
  • Распределение пропорций картин является уникальным и весьма отличается от распределений прямоугольных объектов с современном мире (например, этикеток, марок, логотипов и т.д.).

Причины перехода к соотношениям в виде дробей с малыми знаменателями в семнадцатом веке — открытый вопрос. Был ли переход вызван эстетическими причинами, или обусловлен особенностями промышленного производства и стандартизацией? Мы оставим этот вопрос историкам искусства.

Для более четкого ответа на вопрос о том, соответствуют ли максимумы некоторым известным константам (квадратный корень из золотого сечения, пластическая константа, 4/3 или 5/4), необходимы более точные данные по размерам картин восемнадцатого века. Многие каталоги дают размеры без указания точности измерения и входит ли рама в указанные размеры. Точность измерений чаще всего равна сантиметру. При типичных размерах картин около ста сантиметров округление до сантиметра вносит определенное количество искажений в распределение. С другой стороны, использование изображений для анализа соотношения сторон не представляется возможным, так как ошибки, вызванные обрезанием и перспективными искажениями слишком велики. Мы намеренно не объединяли данные из разных коллекций. В дополнение к вопросу определения дубликатов, следовало бы тщательно изучить вопрос о том, указаны ли размеры с рамкой или нет, а также более подробно исследовать вопрос о точности измерений указанных размеров. Подобную экспертизу искусствоведу следует проводить весьма тщательным образом.

Одна большая коллекция, которую мы не включили в исследование, может быть полезна в определении точных значений максимумов распределения соотношений сторон для 178000 старинных картин онлайн-каталога 645 музеев из Германии, Австрии и Швейцарии, которые опубликовал в интернете De Gruyter На момент написания этой статьи мне не удалось получить разрешение на доступ к данным из этого каталога. (Существуют и различные малые базы данных картин, в том числе утраченные, которые могут быть проанализированы, но они, вероятно, дадут результаты, аналогичные полученным нами).

Интересно, что последние исследования показывают, что не только люди, но и другие млекопитающие, вероятно, предпочитают пропорции около 1.2 (см. недавнее исследование Винне и др.).

На изображениях картин можно проводить самые разнообразные количественные исследования — к примеру, анализ спектрального распределения мощности пространственных частот, которые есть суть компоненты Фурье цветов и яркостей, анализ освещенности и направлений, структуры и композиции (здесь, здесь, и здесь), психологических основ цветовых структур, и автоматической классификации. Если позволит время, мы будем проводить подобные исследования и в будущем. Весьма занятное исследование большого количества аспектов 2229 картин в MoMA было проведено Roder.

И, конечно, можно проанализировать схожим образом самые разные рукотворные объекты, узнать, насколько часто в разных областях появляется золотое сечение — в автомобилях, например. Соотношения сторон можно исследовать в современном расширении понятия картин — в граффити. Можно анализировать и само содержание картины, чтобы посмотреть на частоту появления золотого сечения (см. здесь, и здесь). Оставим это читателям, заинтересовавшихся в развитии этого направления.

По вопросам о технологиях Wolfram пишите на [email protected]

Основополагающий принцип природы – «Золотое сечение»

В быту часто советуют найти «золотую середину», но такой середины в природе не существует, однако, есть «золотое сечение» или «золотое число». 

Пн 23 июля 2018, 10:07

Фото: thejizn.com

Золотое сечение это универсальное проявление структурной гармонии. Оно встречается в природе, науке, искусстве – во всем, с чем может соприкоснуться человек. Наиболее емкое определение золотого сечения гласит, что меньшая часть относится к большей, как большая ко всему целому. Приблизительная его величина – 1,6180339887. В округленном процентном значении пропорции частей целого будут соотноситься как 62% на 38%. Это соотношение действует в формах пространства и времени.

Что может быть общего между древнеегипетскими пирамидами, картиной Леонардо да Винчи «Мона Лиза», подсолнухом, улиткой, сосновой шишкой и пальцами человека? Связывает их удивительные числа, которые были открыты итальянским математиком средневековья Леонардо Пизанским, более известным по именем Фибоначчи (родился около 1170 — умер после 1228). После его открытия числа эти так и стали называться его именем. Удивительная закономерность последовательности чисел Фибоначчи состоит в том, что каждое число в этой последовательности получается из суммы двух предыдущих чисел, которые представляют бесконечную последовательность чисел: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, … Эту схему расположения чисел можно увидеть повсюду в природе. Когда большее число из этой последовательности разделить на меньшее, расположенное рядом число, то соотношение приблизительно получается 1.618; и если меньшее число разделить на большее число, стоящее рядом, то получается примерно 0.618. Древние видели в золотом сечении отражение космического порядка, а Иоганн Кеплер называл его одним из сокровищ геометрии. Существует большое количество способов математически выразить золотое соотношение, и во всех этих методах имеется своя определенная простота, точность и обаяние. Но история этого понятия уходит еще в древние времена, когда только зарождались такие науки, как математика и философия.

Как научное понятие золотое сечение вошло в обиход во времена Пифагора, а именно в VI веке до нашей эры. Но еще до того знания о подобном соотношении на практике использовали в Древнем Египте и Вавилоне. Ярким свидетельством этого являются пирамиды, для построения которых использовали именно такую золотую пропорцию. Эпоха Возрождения стала новым дыханием для гармонического деления, особенно благодаря Леонардо да Винчи. Это соотношение все больше начали использовать как в точных науках, таких как геометрия, так и в искусстве. Ученные и художники стали более глубоко изучать золотое сечение и создавать книги, рассматривающие этот вопрос. Одна из самых важных исторических работ, связанных с золотой пропорцией, – это книга Луки Панчоли под названием «Божественная пропорция». 

Правило золотого сечения активно применялось в построении пирамид. Например, всемирно известные гробницы Тутанхамона и Хеопса возводили с использованием такого соотношения. И золотое сечение пирамиды до сих пор остается загадкой, ведь по сей день не известно, случайно или же специально выбирались такие размеры для их оснований и высот. 

Правило золотого сечения четко видно в фасаде Парфенона – одного из самых красивых сооружений в архитектуре Древней Греции. То же касается здания собора Парижской Богоматери (Нотр-Дам де Пари), то здесь не только фасады, но и другие части конструкции возводили, опираясь на эту невероятную пропорцию. Золотое сечение — это универсальное проявление структурной гармонии. Оно встречается в природе, науке, искусстве – во всем, с чем может соприкоснуться человек.

Почему Фидий (греческий скульптор) и другие мастера древней Греции и Египта, часто использовали этот коэффициент при создании многих своих произведений искусства? Все потому, что было обнаружено, что при таком коэффициенте человеку наиболее приятно смотреть на предмет дизайна, который образует так называемый Золотой прямоугольник. Если короткая сторона прямоугольника равна 1, то его длинная сторона будет равна 1.618.

Здание ООН – это Золотой прямоугольник. Многие вещи, которыми мы пользуемся, в своей основе имеют приблизительный Золотой прямоугольник: кредитные карточки, игральные карты, открытки, блокноты, карточки каталога 3 х 5 и 5 х 8 и т. д.

Когда мы понимаем, что информация, необходимая для образования спиралей и чисел в живых организмах, хранится в ДНК, то должно ли нас удивлять, что ширина молекулы ДНК составляет 21 ангстрем (1А =10-10 м), а длина одного полного поворота её спирали равна 34 ангстремам (причем оба числа относятся к последовательности чисел Фибоначчи)? Молекула ДНК представляет собой одну длинную цепь золотых сечений. Их можно обнаружить как в живой, так и в неживой природе. Их симметрия, красота и математическая точность присутствуют в каждой сфере природы, но любое творение лишено полного совершенства (возможно, из-за греха Адама).

Вы задумывались, можно ли определить меру красоте? Оказывается, с математической точки зрения возможно. Простая арифметика даёт понятие об абсолютной гармонии, которая и отображается в безупречной красоте, благодаря принципу Золотого сечения. Архитектурные сооружения древнего Египта и Вавилона первыми начали соответствовать данному принципу. Но сформулировал принцип первым Пифагор. По ряду Фибоначчи устроена шишка, ракушка, ананас, подсолнух, ураган, паутина, молекула ДНК, яйцо, стрекоза, Красота природных форм рождается во взаимодействии двух физических сил — тяготения и инерции. «Золотая пропорция» символ этого взаимодействия, поскольку диктуемое ею отношение большей части целого к самому целому выражает основные моменты живого роста: стремительный взлет легкого юного побега до зрелости и замедленный рост «по инерции» до момента цветения, когда достигшее полной силы растение готовится дать жизнь новому побегу. «Золотое сечение» — один из этих основополагающих принципов природы.

Художники, ученые, модельеры, дизайнеры делают свои расчеты, чертежи или наброски, исходя из соотношения золотого сечения. Они используют мерки с тела человека, сотворенного также по принципу золотой сечения. Пропорции различных частей нашего тела составляют число, очень близкое к золотому сечению. Если эти пропорции совпадают с формулой золотого сечения, то внешность или тело человека считается идеально сложенными. Пример золотого сечения в строении тела человека: если принять центром человеческого тела точку пупа, а расстояние между ступней человека и точкой пупа за единицу измерения, то рост человека эквивалентен числу 1.618. Кто любит чудеса — сотворите волшебное действо: умножьте свой рост на магическое число 0,618 и вы выйдете на пуп! Если получится — то вы идеальный человек по Леонардо да Винчи. Таким образом, человеческие представления о красивом формируются явно под влиянием того, какие воплощения порядка и гармонии человек видит в живой природе.

В Москве в 2017 году мэром города Сергеем Собяниным был запущен проект реновации жилого комплекса столицы. Казалось бы, что подобная мера должна быть встречена с воодушевлением среди жителей города. Ведь взамен квартир в старых пятиэтажках, которые подлежат сносу, горожанам предлагают переселиться в новые, комфортные дома. Однако подобная инициатива со стороны руководства столицей вызвала негативную реакцию и люди начали выходить на митинги против сноса старых сооружений. Инженер-физик Алексей Золотарев, предполагает, что разгадка заключается в том, что хрущёвки Москвы строились именно по золотым пропорциям. Скорее всего, предполагает ученый, люди это чувствуют, жить в пятиэтажках очень комфортно, люди меньше болеют и поэтому не хотят переезжать куда-либо. Физик утверждает, что существует особые «космические» пропорции построения всех жилых систем, который имеет цифровое выражение — 1,618. Эта цифра имеет сакральный, мистический смысл. Во время правления Хрущева по всей стране развернулось строительство малогабаритных пятиэтажек. В них также можно усмотреть золотое сечение, соотношение высоты, длины, ширины 1, 618, однако приравнивать эти постройки к произведениям искусства достаточно проблематично.

Валериан Чупин

Источник информации: Чайковские. Новости


Комментарии (4)

Спокуха, клава…

Да чтоб вы знали.
Хотя бы из этого источника — лучше поздно, чем никогда.
Чернуха уже душу режет.
А «Эта информация», 23 июля 2018 19:52 · Я, душу греет, что не всё ещё потеряно нашей цивилизацией. Вроде эволюция, как нас уверяли , — это движение вперёд и вверх по спирали? И, если в 6 веке д. н.э. об этом думали и смогли найти положительный момент в окружающем нас мире, то нам то уж предстоят великие открытия.
Правда, всё ещё дверь никто не может отыскать, которую стоит распахнуть, чтобы совершить рывок вперёд и вверх, всё не те открывают и не те двери.

Эта информация как связана с чайковскими новостями? Пи-пи-пи…


Программа «Молодая семья»: получить выплату можно уже в этом году

В муниципалитетах Прикамья начинается выдача сертификатов по программе «Молодая семья». Обладатели этого сертификата смогут приобрести квартиру, часть стоимости которой покроют государство (по федеральной программе выплата составляет 30-35%) либо регион (по этому направлению выплата меньше – 10%).

Пт 11 февраля 2022, 16:25

Комментариев: 0


За жителей аварийных домов вступилась прокуратура

Чайковская прокуратура проверила, как на территории округа исполняется законодательство по реализации региональной адресной программы, регламентирующей переселение граждан из аварийного жилья.

Чт 03 февраля 2022, 16:00

Комментариев: 5


УФАС пошел на дело

В отношении пермской «дочки» ЛУКОЙЛа антимонопольная служба возбудила дело из-за повышения компанией цен на топливо.

Пт 11 февраля 2022, 13:04

Комментариев: 1


ЛЕНТА НОВОСТЕЙ

После 23 февраля Госавтоинспекция устроила рейд на Вокзальной

Сегодня утром, 24 февраля 2022 года, в Чайковском, на улице Вокзальная, дорожный патруль останавливал едва ли не каждый автомобиль, движущийся как в сторону города, так и из него. Под проверку попали не только легковые машины, но также рейсовые автобусы.

Чт 24 февраля 2022, 11:03

Комментариев: 1

Будьте бдительны: активизировались мошенники!

В начале февраля 2022 года в Отделе МВД России по Чайковскому городского округу только за одни дежурные сутки зарегистрировано сразу несколько обращений граждан, пострадавших от рук мошенников. Злоумышленники играли на чувствах пожилых людей, отправляя им по телефону СМС «Ваш родственник попал в ДТП» или звонили им.

Чт 24 февраля 2022, 13:11

Комментариев: 0

Удачный союз Науки и Бизнеса

Что представляет собой современная российская элита – класс крупных предпринимателей? Многих олигархов характеризует оторванность от проблем российского общества. Они живут, не чувствуя страны. Что они оставят после себя? Заверенный у нотариуса список имущества? Стяжание богатства ради богатства ведет в тупик и личность, и дело, и национальную экономику.

Ср 30 ноября 2016, 15:08

Комментариев: 6

ЗОЛОТОЕ СЕЧЕНИЕ В ПРИРОДЕ, В ИСКУССТВЕ И В ЖИЗНИ ЧЕЛОВЕКА.

Воспоминание о России

ЗОЛОТОЕ СЕЧЕНИЕ В ПРИРОДЕ, В ИСКУССТВЕ И В ЖИЗНИ ЧЕЛОВЕКА

Многие, может быть, и не знают, что такое золотое сечение, — это будит далекие воспоминания школьных дней, уроки геометрии, деление линии «в среднем и крайнем отношении». Большинством все это позабыто. Чтобы не отягощать читателей, которые наверняка все это позабыли, скажу кратко: золотое сечение есть деление известной протяженности таким образом, чтобы большая часть относилась к меньшей, как целое к большей. Это деление применимо и к пространственным явлениям, и к временным.

Оно было известно со времени античной древности — им занимались эллинские философы. И именно они заметили, что золотое сечение каким-то образом связано с «эстетическим восприятием» стройности, гармоничности пропорций, соразмерности частей. Уже античные мыслители заметили, что оно распространено в явлениях природы, в строении минералов, в пропорциях частей растений и членов тела животных и людей. Они же заметили распространенность этого типа соразмерности в произведениях искусства — в архитектурных пропорциях, в скульптуре, и всюду ‹это› связано с тем же эстетическим ощущением стройности, что, по мнению философов типа «эмпириокритицизма» (Авенариус, Мах), объясняется тем, что в условиях золотого сечения количество созерцаемых и наблюдаемых отношений сводится к минимуму и обусловливает наибольшую «легкость» восприятия.

Самое положение точки золотого сечения на отрезке прямой линии выражается иррациональным числом, приблизительная величина которого 0,618 длины отрезка.

Значительно позднее феномен золотого сечения был обнаружен в явлениях «временного характера», а не пространственного, в искусствах «длящихся», как поэзия и музыка, в произведениях литературы. И здесь наличие золотого сечения выражается в положении «кульминационного пункта» произведения или даже отдельных частей произведения. Если кульминационный пункт произведения или его органического отрезка падает на золотое сечение — то опять же это совпадение отмечается в восприятии ощущением максимальной «стройности».

Долгое время все эти рассуждения о золотом сечении имели не научный характер, являлись просто «любопытным или занятным» феноменом, не более того. На научную почву его было суждено поставить русскому «музыковеду» — моему покойному другу Эм. Карл. Розенову, Который произвел первый тщательное исследование этого феномена главным образом в музыкальных произведениях и только отчасти в литературных. В музыке легче точно установить именно «кульминационный» пункт произведения, которым обычно является либо кульминация динамики, либо пункт наибольшей «значительности», а чаще всего оба вместе.

В 1924 году я произвел точное исследование всех этюдов Шопена с этой точки зрения (работа опубликована в журнале Государственной академии художественных наук в Москве) [138] — из них минимальное число оказалось не имеющих золотого сечения на надлежащем пункте линии времени (в трех из 25), а огромное большинство со значительной точностью подтверждало теорию. Интересно, что при этом приходилось иметь дело не с «метрическим временем» при вычислении отрезков произведения, не с «нотным» временем, а с реальным временем исполнения, учитывающим задержки и колебания темпа экспрессивного типа. Для этой цели я пользовался лентами механического инструмента «миньон», записывающего живую игру пианиста, — измерение нужных отрезков времени сводилось тогда к измерению пространства на ленте. Это была вполне научно точная работа, но параллельно я не мог не отмечать совершенно четких проявлений этой же закономерности и в произведениях почти всех гениальных композиторов.

При этом исследовании выяснилось, что обычно в музыкальных произведениях имеется не одно золотое сечение, а по меньшей мере два. Одно — главное — находится на расстоянии, выше указанном мною (0,618), от начала произведения, другое же — несколько менее важное, но всегда отмеченное каким-нибудь «эстетическим событием» — на том же расстоянии от конца. Распространенность этого явления среди гениальных композиторов необычайно велика. Я произвел с этой целью «осмотр» едва ли не всей «гениальной и высокоталантливой» музыкальной литературы, так что даже перечень имен не представляется нужным. Исключения редки и обычно относятся к «негениальным» произведениям и к композиторам, чуждым инстинкта «стройности». Интересно, что даже такие гигантские произведения, как, например, «Нибелунги» Вагнера, имеют «правильно поставленные» кульминации, и не только в каждой части тетралогии, но и во всей ее совокупности: кульминации эти падают на моменты усыпления Брунгильды и «пробуждения» ее.

Я не стану обременять читателя массой примеров, но скажу, что и в области литературы я отметил то же явление. В поэзии кульминация (как и в музыке) главным образом интонационная, и так как интонация поэтом не фиксируется, а остается в «импровизационном плане», то тут точного исследования быть не может.

Четче, определеннее и легче исследуется этот феномен в произведениях литературы, где кульминация имеет характер смысловый (кульминационный пункт «событий»). Но хочу отметить тот факт, что интонационный «кульминационный пункт» при чтении стиха естественно попадает именно на золотое сечение. В обычном, четырехстрофном отрывке он находится в середине третьей строфы. Отмечу, что и самая форма сонета (8 строк плюс 6) как бы сама приспособлена к золотому сечению и кульминация падает на начало 9-й строки.

Когда я усиленно работал над этим феноменом, мне пришла в голову мысль, может быть чрезмерно смелая, о том, что если принцип золотого сечения так распространен и в природе, и в искусстве, то нельзя ли ожидать его проявления и… в человеческой жизни? Ведь в природе, по всей вероятности, этот принцип является следствием законов роста организмов, но ведь и человек — тоже организм. Я решил подойти ближе к этому вопросу. Я выбрал для исследования биографии «великих» людей в разных областях — гениев политики, науки, искусства. Выбрал я «великих» потому, что, во-первых, их биографии легче детально знать; во-вторых, потому, что великие люди обычно имеют свою центральную идею жизни и ее реализация имеет обычно точно известную дату, да и вообще гениальные люди, творящие «с необходимостью законов природы», как раз подходят для такого исследования, ибо тут есть наибольшая вероятность найти подтверждение закона, который меня интересовал. Так и вышло.

Я исследовал около 800 биографий, и процент «невыполнения» закона был всего между 3–4 %. Как и в музыкальных произведениях, я натолкнулся на многократность золотых сечений (нормально их два) — обычно одно соответствует выходу гения на путь своей гениальности, другое — кульминации жизни и ее достижений.

Закономерность эта, конечно, является скорее своеобразной статистической закономерностью и как таковая не может претендовать на абсолютную математическую точность, но ее необычайная распространенность доказывает, что с ней можно и надлежит считаться. Из случайно выбранных биографий фреквенция в 96 % что-нибудь да значит. Почему в самом деле Ньютон написал (завершил) свои «Principla» в год золотого сечения своей жизни? Почему Наполеон короновался императором в тот же день золотого сечения? А Петр Великий основал Петербург? Отчего Пушкин в годы золотого сечения своей жизни написал именно свои величайшие вещи («Борис Годунов», «Евгений Онегин», «Пророк»), отчего Мусоргский закончил вчерне «Бориса» в тот же знаменательный момент? а Гёте в соответствующем пункте своей жизни закончил первую часть «Фауста»? Менделеев в этом пункте создал свою «Периодическую систему». Возьмем примеры более нам хронологически близкие: Ленин основал партию большевиков в год своего золотого сечения, тем самым предопределив свою кончину именно в 1924 году. Сталин в год своего золотого сечения стал генеральным секретарем партии, т. е. диктатором — выполнил «задачу жизни». Любопытно то. что характер смерти, ее естественность или «неестественность», по-видимому, не имеет значения, как видно из примера Пушкина: лишняя вода на мельницу «фаталистов» — его смертный приговор был им самим написан вместе с «Евгением Онегиным» и с «Борисом».

С Львом Толстым дело обстоит сложнее и тоже чрезвычайно интересно. Его первое золотое сечение точно совпадает с появлением «Войны и мира» — вторая же (важнейшая) кульминация, хотя около того же времени написана была «Анна Каренина», точно совпадает не с литературными событиями его жизни, а с его «обращением». И надо понять, что это и правильно, ибо для Толстого, как мы все знаем, «обращение» было более важным событием его психики, чем его литература, о чем он не уставал повторять во весь конец своей жизни.

Я не могу утомлять читателя еще другими подтверждениями закономерности — материала слишком много. Теперь перейду к иному моему экспериментированию в этой же области. Дело в том, что если известна дата рождения «гения» или выдающегося человека и если есть данные для того, чтобы уже при его жизни утверждать факт достижения им кульминационного пункта жизни, то достаточно небольшого арифметического вычисления, чтобы предсказать и конец его жизни. Такого рода вычисления я и производил, когда вышеописанные условия были налицо. Конечно, я ничего не говорил заинтересованным лицам, чтобы не повергать их в плохое состояние духа. Я сделал вычисления с двумя объектами, которые давали повод, чтобы считать, что их кульминация уже достигнута и что начинается жизненный и психический «спуск». Эти два лица были — Рахманинов и Глазунов.

Уже в начале десятых годов нашего века я почувствовал, что Глазунов уже перешел свою кульминацию творчества, которой я считал его последние две симфонии, и что дальнейшее творчество уже является «спуском». Исходя из этой даты кульминации, падавшей на годы1907-1908, я вычислил его дату смерти — она должна была произойти в 1935 году, и он точно последовал предсказанию (о котором я ему ничего не говорил). Приблизительно то же произошло и с Рахманиновым. Когда я убедился, что кульминационный подъем им достигнут — на мой (и на рахманиновский) взгляд, это был год написания им его лучшего произведения — «Колоколов» (кантата на текст Э. По), совпадавший и с кульминацией его славы как пианиста, то без труда вычислил, что его кончины можно ожидать в году 1942-43. Так и вышло.

Конечно, тут есть известная неуверенность именно в определении значимости данного момента как кульминационного, но если эта уверенность очень четко выражена, то «предсказание» не представляет никакой трудности. Достаточно возраст данного лица в момент кульминации помножить на 0,62 (округляю цифру для простоты, так как все эти вычисления по необходимости приблизительны) и произведение прибавить к его возрасту, тогда сумма выразит его возраст в момент смерти. Тут нет никакого ни колдовства, ни мистики — одна арифметика. И вся таинственность всего явления, по-видимому, имеет корни в законах физиологического и психологического роста и развития, достижения возможной вершины и потом нормального и естественного увядания. И вот — статистическое исследование показывает, что эти периоды — роста и увядания — между собою образуют отношение золотого сечения.

Почему это так — неизвестно, как и вообще неизвестны причины статистического типа закономерностей. Но самое явление заставляет задуматься хотя бы над «фатальностью» этой закономерности, при которой конец жизни оказывается предопределен задолго до его осуществления.

Золотое сечение. Принципы формообразования в природе

Золотое сечение в искусстве

Под « правилом золотого сечения » в архитектуре и искусстве обычно понимаются асимметричные композиции , не обязательно содержащие золотое сечение математически.

Многие утверждают, что объекты, содержащие в себе « золотое сечение », воспринимаются людьми как наиболее гармоничные . Обычно такие исследования не выдерживают строгой критики. В любом случае ко всем этим утверждениям следует относиться с осторожностью, поскольку во многих случаях это может оказаться результатом подгонки или совпадения. Есть основание считать, что значимость золотого сечения в искусстве преувеличена и основывается на ошибочных расчётах. Некоторые из таких утверждений:

  • Согласно Ле Корбюзье, в рельефе из храма фараона Сети I в Абидосе и в рельефе , изображающем фараона Рамзеса, пропорции фигур соответствуют золотому сечению . В фасаде древнегреческого храма также присутствуют золотые пропорции . В циркуле из древнеримского города Помпеи (музей в Неаполе) также заложены пропорции золотого деления , и т. д. и т. п.
  • Результаты исследования золотого сечения в музыке впервые изложены в докладе Эмилия Розенова (1903) и позднее развиты в его статье «Закон золотого сечения в поэзии и музыке» (1925). Розенов показал действие данной пропорции в музыкальных формах эпохи Барокко и классицизма на примере произведений Баха , Моцарта , Бетховена .

При обсуждении оптимальных соотношений сторон прямоугольников (размеры листов бумаги и кратные, размеры фотопластинок (6:9, 9:12) или кадров фотоплёнки (часто 2:3), размеры кино и телевизионных экранов — например, 3:4 или 9:16) были испытаны самые разные варианты. Оказалось, что большинство людей не воспринимает золотое сечение как оптимальное и считает его пропорции « слишком вытянутыми ».

Начиная с Леонардо да Винчи , многие художники сознательно использовали пропорции « золотого сечения ». Российский зодчий Жолтовский также использовал золотое сечение в своих проектах.

Известно, что Сергей Эйзенштейн искусственно построил фильм «Броненосец Потёмкин» по правилам золотого сечения. Он разбил ленту на пять частей. В первых трёх действие развивается на корабле. В двух последних — в Одессе, где разворачивается восстание. Этот переход в город происходит точно в точке золотого сечения . Да и в каждой части есть свой перелом, происходящий по закону золотого сечения . В кадре, сцене, эпизоде происходит некий скачок в развитии темы: сюжета , настроения. Эйзенштейн считал, что, так как такой переход близок к точке золотого сечения , он воспринимается как наиболее закономерный и естественный.

Другим примером использования правила «золотого сечения » в киноискусстве служит расположение основных компонентов кадра в особых точках — «зрительных центрах». Часто используются четыре точки, расположенные на расстоянии 3/8 и 5/8 от соответствующих краёв плоскости.

Золотое сечение в скульптуре


Скульптурные сооружения, памятники воздвигаются, чтобы увековечить знаменательные события, сохранить в памяти потомков имена прославленных людей, их подвиги и деяния.

Известно, что еще в древности основу скульптуры составляла теория пропорций . Отношения частей человеческого тела связывались с формулой золотого сечения .

Пропорции “золотого сечения” создают впечатление гармонии красоты, поэтому скульпторы использовали их в своих произведениях.

Скульпторы утверждают, что талия делит совершенное человеческое тело в отношении “золотого сечения” . Так, например, знаменитая статуя Аполлона Бельведерского состоит из частей, делящихся по золотым отношениям . Великий древнегреческий скульптор Фидий часто использовал “золотое сечение” в своих произведениях. Самыми знаменитыми из них были статуя Зевса Олимпийского (которая считалась одним из чудес света) и Афины Парфенос.

Золотое сечение в архитектуре

В книгах о “золотом сечении” можно найти замечание о том, что в архитектуре , как и в живописи , все зависит от положения наблюдателя, и что, если некоторые пропорции в здании с одной стороны кажутся образующими “золотое сечение” , то с других точек зрения они будут выглядеть иначе. “Золотое сечение” дает наиболее спокойное соотношение размеров тех или иных длин.

Одним из красивейших произведений древнегреческой архитектуры является Парфенон (V в. до н. э.).

Парфенон имеет 8 колонн по коротким сторонам и 17 по длинным. выступы сделаны целиком из квадратов пентилейского мрамора. Благородство материала, из которого построен храм, позволило ограничить применение обычной в греческой архитектуре раскраски, она только подчеркивает детали и образует цветной фон (синий и красный) для скульптуры. Отношение высоты здания к его длине равно 0,618. Если произвести деление Парфенона по “золотому сечению” , то получим те или иные выступы фасада.

Другим примером из архитектуры древности является Пантеон.

Известный русский архитектор М. Казаков в своем творчестве широко использовал “золотое сечение” . Его талант был многогранным, но в большей степени он раскрылся в многочисленных осуществленных проектах жилых домов и усадеб. Например, “золотое сечение” можно обнаружить в архитектуре здания сената в Кремле. По проекту М. Казакова в Москве была построена Голицынская больница, которая в настоящее время называется Первой клинической больницей имени Н.И. Пирогова (Ленинский проспект, д. 5).

Еще один архитектурный шедевр Москвы – дом Пашкова – является одним из наиболее совершенных произведений архитектуры В. Баженова.

Прекрасное творение В. Баженова прочно вошло в ансамбль центра современной Москвы, обогатило его. Наружный вид дома сохранился почти без изменений до наших дней, несмотря на то, что он сильно обгорел в 1812 г.

При восстановлении здание приобрело более массивные формы . Не сохранилась и внутренняя планировка здания, о которой дают представления только чертеж нижнего этажа.

Многие высказывания зодчего заслуживают внимание и в наши дни. О своем любимом искусстве В. Баженов говорил:

Архитектура – главнейшие имеет три предмета: красоту, спокойность и прочность здания… К достижению сего служит руководством знание пропорции , перспектива , механика или вообще физика, а всем им общим вождем является рассудок ”.

Золотое сечение в живописи

Каждый рисующий определяет отношения величин и, не удивляйтесь, отличает среди них отношение «золотого — сечения» . Такой характер зрительного восприятия подтверждается многочисленными опытами, проводившимися в разное время в ряде стран мира.

Немецкий психолог Густав Фехнер в 1876 г. провел ряд экспериментов, показывая мужчинам и женщинам, юношам и девушкам, а также детям нарисованные на бумаге фигуры различных прямоугольников, предлагая выбрать из них только один, но производящий на каждого испытуемого самое приятное впечатление. Все выбрали прямоугольник, показывающий отношение двух его сторон в пропорции «золотого сечения» . Опыты иного рода продемонстрировал перед студентами нейрофизиолог из США Уоррен Мак-Каллок в 40-х годах нашего века, когда попросил нескольких добровольцев из числа будущих специалистов привести продолговатый предмет к предпочтительной форме . Студенты некоторое время работали, а затем вернули профессору предметы. Почти на всех из них отметки были нанесены точно в районе отношения «золотого сечения », хотя молодым людям совершенно не было ничего известно об этой « божественной пропорции ». Мак-Каллок потратил два года на подтверждение этого феномена, так как сам лично не верил, что все люди выбирают эту пропорцию или устанавливают ее в любительской работе по изготовлению всевозможных поделок.

Интересное явление наблюдается при посещении зрителями музеев и выставок изобразительного искусства . Многие люди, сами не рисовавшие, с поразительной точностью улавливают даже малейшие неточности в принципа.

Пусть никто, не будучи математиком, не дерзнет читать мои труды ”.


Он снискал славу непревзойденного художника, великого ученого, гения, предвосхитившего многие изобретения, которые не были осуществлены вплоть до XX в.
Нет сомнений, что Леонардо да Винчи был великим художником, это признавали уже его современники, но его личность и деятельность останутся покрытыми тайной, так как он оставил потомкам не связное изложение своих идей, а лишь многочисленные рукописные наброски, заметки, в которых говорится “обо всем на свете”.
Он писал справа налево неразборчивым почерком и левой рукой. Это самый известный из существующих образец зеркального письма.
Портрет Монны Лизы (Джоконды) долгие годы привлекает внимание исследователей, которые обнаружили, что композиция рисунка основана на золотых треугольниках , являющихся частями правильного звездчатого пятиугольника. Существует очень много версий об истории этого портрета . Вот одна из них.


Жил-был один бедный человек, было у него четыре сына: три умных, а один из них и так, и сяк. И вот пришла за отцом смерть. Перед тем, как расстаться с жизнью, он позвал к себе детей и сказал: “Сыны мои, скоро я умру. Как только вы схороните меня, заприте хижину и идите на край света добывать себе счастья. Пусть каждый из вас чему-нибудь научится, чтобы мог кормить сам себя”. Отец умер, а сыновья разошлись по свету, договорившись спустя три года вернуться на поляну родной рощи. Пришел первый брат, который научился плотничать, срубил дерево и обтесал его, сделал из него женщину, отошел немного и ждет. Вернулся второй брат, увидел деревянную женщину и, так как он был портной, в одну минуту одел ее: как искусный мастер он сшил для нее красивую шелковую одежду. Третий сын украсил женщину золотом и драгоценными камнями – ведь он был ювелир. Наконец, пришел четвертый брат. Он не умел плотничать и шить, он умел только слушать, что говорит земля, деревья, травы, звери и птицы, знал ход небесных тел и еще умел петь чудесные песни. Он запел песню, от которой заплакали притаившиеся за кустами братья. Песней этой он оживил женщину, она улыбнулась и вздохнула. Братья бросились к ней и каждый кричал одно и то же: “Ты должна быть моей женой”. Но женщина ответила: “Ты меня создал – будь мне отцом. Ты меня одел, а ты украсил – будьте мне братьями.

А ты, что вдохнул в меня душу и научил радоваться жизни, ты один мне нужен на всю жизнь”.


Кончив сказку, Леонардо взглянул на Монну Лизу, ее лицо озарилось светом, глаза сияли. Потом, точно пробудившись от сна, она вздохнула, провела по лицу рукой и без слов пошла на свое место, сложила руки и приняла обычную позу. Но дело было сделано – художник пробудил равнодушную статую ; улыбка блаженства, медленно исчезая с ее лица, осталась в уголках рта и трепетала, придавая лицу изумительное, загадочное и чуть лукавое выражение, как у человека, который узнал тайну и, бережно ее храня, не может сдержать торжество. Леонардо молча работал, боясь упустить этот момент, этот луч солнца, осветивший его скучную модель. .. портрета . Толковали о естественности выражения, о простоте позы, о красоте рук. Художник сделал еще небывалое: на картине изображен воздух, он окутывает фигуру прозрачной дымкой. Несмотря на успех, Леонардо был мрачен, положение во Флоренции показалось художнику тягостным, он собрался в дорогу. Не помогли ему напоминания о нахлынувших заказах.

20.05.2017

Золотое сечение – это то, о чем должен знать каждый дизайнер. Мы объясним, что это такое, и как вы можете его использовать.

Существует общее математическое соотношение, найденное в природе, которое может быть использовано в дизайне для создания приятных, натурально-выглядящих композиций. Его называют Золотым Сечением или греческой буквой “фи”. Если вы иллюстратор, арт директор или графический дизайнер, вам определенно стоит использовать Золотое Сечение в каждом проекте.

В этой статье мы объясним, как его использовать, а также поделимся несколькими отличными инструментами для дальнейшего вдохновения и изучения.

Тесно связанная с Последовательностью Фибоначи (Fibonacci Sequence), которую вы, возможно, помните из уроков математики или романа Дэна Брауна “Код Да Винчи”, Золотое Сечение описывает идеально симметричное взаимоотношение между двумя пропорциями.

Приблизительно равное соотношению 1: 1.61, Золотое Сечение может быть иллюститровано как Золотой Прямоугольник: большой прямоугольник, включающий квадрат (в котором стороны равны длине самой короткой стороны прямоугольника) и прямоугольник поменьше.

Если убрать квадрат из прямоугольника, останется другой, маленький Золотой Прямоугольник. Этот процесс может продолжаться до бесконечности, как и цифры Фибоначи, которые работают в обратном порядке. (Добавление квадрата со сторонами, равными длине самой длинной стороны прямоугольника, приближает вас к Золотому Прямоугольнику и Золотому Сечению.)

Золотое Сечение в действии

Считается, что Золотое Сечение используется уже около 4000 лет в искусстве и дизайне. Однако, многие люди соглашаются, что при строительстве Египетских Пирамид также использовался этот принцип.

В более современные времена это правило может быть замечено в музыке, искусстве и дизайне вокруг нас. Применяя аналогичную рабочую методологию, вы можете привнести в свою работу те же особенности дизайна. Давайте взглянем на несколько вдохновляющих примеров.

Греческая архитектура

В древнегреческой архитектуре Золотое Сечение использовалось для определения приятных пространственных отношений между шириной здания и его высотой, размером портика и даже положением колонн, поддерживающих структуру.

В результате получается идеально пропорциональное строение. Движение неоклассической архитектуры также использовало эти принципы.

Тайная вечеря

Леонардо Да Винчи, как и многие другие художники прошлых лет, часто использовал Золотое Сечение для создания приятных композиций.

В Тайной вечере фигуры расположены в нижних двух третях (самая большая из двух частей Золотого Сечения), а Иисус идеально зарисован между золотых прямоугольников.

Золотое сечение в природе

Существует множество примеров Золотого Сечения в природе – их вы можете обнаружить вокруг себя. Цветы, морские раковины, ананасы и даже пчелиные соты демонстрируют одинаковое соотношение.

Как рассчитать Золотое Сечение

Рассчет Золотого Сечения достаточно прост, и начинается с простого квадрата:

01. Нарисуйте квадрат

Он образует длину короткой стороны прямоугольника.

02. Разделите квадрат

Разделите квадрат пополам с помощью вертикальной линии, образуя два прямоугольника.

03. Проведите диагональ

В одном из прямоугольников проведиде линию из одного угла в противоположный.

04. Поверните

Поверните эту линию так, чтобы она легла горизонтально по отношению к первому прямоугольнику.

05. Создайте новый прямоугольник

Создайте прямоугольник, используя новую горизонтальную линию и первый прямоугольник.

Как использовать Золотое Сечение

Использовать этот принцип проще, чем вы думаете. Существует пара быстрых трюков, которые вы можете использовать в своих макетах, или потратить немного больше времени и полностью раскрыть концепт.

Быстрый способ

Если вы когда-нибудь сталкивались с “Правилом третей”, то вам будет знакома идея разделения пространства на равные трети по вертикали и горизонтали, при этом места пересечения линий создают естественные точки для объектов.

Фотограф размещает ключевой объект на одной из этих пересекающихся линий, чтобы создать приятную композицию. Этот прицип может также использоваться в вашей разметке страниц и дизайне постеров.

Правило третей можно применять к любой форме, но если вы примените его к прямоугольнику с пропорциями примерно 1: 1.6, вы окажетесь очень близко к золотому прямоугольнику, что сделает композицию более приятной для глаз.

Полная реализация

Если вы хотите реализовать Золотое Сечение в вашем дизайне в полной мере, то просто расположите основной контент и сайдбар (в веб дизайне) в соотношении равном 1: 1. 61.

Можно округлить значения в меньшую или большую стороны: если контент-зона равна 640px, а сайдбар 400px, то эта разметка вполне подойдет под Золотое Сечение.

Разумеется, вы также можете разделить области контента и боковой панели на одно и то же отношение, а связь между заголовком веб-страницы, областью содержимого, футером и навигацией также может быть спроектирована с использованием того же приципа.

Полезные инструменты

Вот несколько инструментов, которые помогут вам в использовании Золотого Сечения в дизайне и создании пропорциональных проектов.

GoldenRATIO – это приложение для создания дизайна веб сайтов, интерфейсов и шаблонов, подходящих под Золотое Сечение. Доступно в Mac App Store за 2,99$. Включает визуальный калькулятор Золотого Сечения.

Так же в приложении есть функция “Избранное”, которое сохраняет настройки для повторяющихся задач и “Click-thru” мод, позволяющий сворачивать приложение в Photoshop.

Этот калькулятор Золотого Сечения от Pearsonified помогает в создании идеальной типографики для вашего сайта. Введите размер шрифта, ширину контейнера в поле, и нажмите кнопку Set my type! Если вам нужно оптимизировать количество букв в строчке, вы можете дополнительно ввести значение CPL.

Это простое, полезное и бесплатное приложение доступно для Mac и PC. Введите любое число, и приложение вычислит вторую цифру в соответствии с приципом Золотого Сечения.

Это приложение позволяет проектировать с золотыми пропорциями, экономя кучу времени на вычислениях.

Вы можете менять формы и размеры, фокусируясь на работе над своим проектом. Постоянная лицензия стоит 49$, но вы можете скачать бесплатную версию на месяц.

Обучение Золтому Сечению

Вот несколько полезных туториалов по Золотому Сечению (английский язык):

В этом туториале для Digital Arts Роберто Маррас (Roberto Marras) показывает, как использовать Золотое Сечение в художественной работе.

Туториал от Tuts+, рассказывающий, как использовать золотые принципы в веб дизайн проектах.

Туториал от Smashing Magazine, рассказывающий о пропорциях и правиле третей.

Эта гармония поражает своими масштабами…

Здравствуйте, друзья!

Вы что-нибудь слышали о Божественной гармонии или Золотом сечении? Задумывались ли о том, почему нам что-то кажется идеальным и красивым, а что-то отталкивает?

Если нет, то вы удачно попали на эту статью, потому что в ней мы обсудим золотое сечение, узнаем что это такое, как оно выглядит в природе и в человеке. Поговорим о его принципах, узнаем что такое ряд Фибоначчи и многое многое другое, включая понятие золотой прямоугольник и золотая спираль.

Да, в статье много изображений, формул, как-никак, золотое сечение — это еще и математика. Но все описано достаточно простым языком, наглядно. А еще, в конце статьи, вы узнаете, почему все так любят котиков =)

Что такое золотое сечение?

Если по-простому, то золотое сечение — это определенное правило пропорции, которое создает гармонию ?. То есть, если мы не нарушаем правила этих пропорций, то у нас получается очень гармоничная композиция.

Наиболее емкое определение золотого сечения гласит, что меньшая часть относится к большей, как большая ко всему целому.

Но, кроме этого, золотое сечение — это математика: у него есть конкретная формула и конкретное число. Многие математики, вообще, считают его формулой божественной гармонии, и называют «асимметричной симметрией».

До наших современников золотое сечение дошло со времен Древней Греции, однако, бытует мнение, что сами греки уже подсмотрели золотое сечение у египтян. Потому что многие произведения искусства Древнего Египта четко построены по канонам этой пропорции.

Считается, что первым ввел понятие золотого сечения Пифагор. До наших дней дошли труды Евклида (он при помощи золотого сечения строил правильные пятиугольники, именно поэтому такой пятиугольник назван «золотым»), а число золотого сечения названо в честь древнегреческого архитектора Фидия. То есть, это у нас число «фи» (обозначается греческой буквой φ), и равно оно 1. 6180339887498948482… Естественно, это значение округляют: φ = 1,618 или φ = 1,62, а в процентном соотношении золотое сечение выглядит, как 62% и 38%.

В чем же уникальность этой пропорции (а она, поверьте, есть)? Давайте для начала попробуем разобраться на примере отрезка. Итак, берем отрезок и делим его на неравные части таким образом, чтобы его меньшая часть относилась к большей, как большая ко всему целому. Понимаю, не очень пока ясно, что к чему, попробую проиллюстрировать наглядней на примере отрезков:


Итак, берем отрезок и делим его на два других, таким образом, чтобы меньший отрезок а, относился к большему отрезку b, так же, как и отрезок b относится к целому, то есть ко всей линии (a + b). Математически это выглядит так:


Этот правило работает бесконечно, вы можете делить отрезки сколь угодно долго. И, видите, как это просто. Главное один раз понять и все.

Но теперь рассмотрим более сложный пример, который попадается очень часто, так как золотое сечение еще представляют в виде золотого прямоугольника (соотношение сторон которого равно φ = 1,62). Это очень интересный прямоугольник: если от него «отрезать» квадрат, то мы снова получим золотой прямоугольник. И так бесконечно много раз. Смотрите:


Но математика не была бы математикой, если бы в ней не было формул. Так что, друзья, сейчас будет немножко «больно». Решение золотой пропорции спрятала под спойлер, очень много формул, но без них не хочу оставлять статью.

Ряд Фибоначчи и золотое сечение

Продолжаем творить и наблюдать за магией математики и золотого сечения. В средние века был такой товарищ — Фибоначчи (или Фибоначи, везде по-разному пишут). Любил математику и задачи, была у него и интересная задачка с размножением кроликов =) Но не в этом суть. Он открыл числовую последовательность, числа в ней так и зовутся «числа Фибоначчи».

Сама последовательность выглядит так:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233… и дальше до бесконечности.

Если словами, то последовательность Фибоначчи — это такая последовательность чисел, где каждое последующее число, равно сумме двух предыдущих.

Причем здесь золотое сечение? Сейчас увидите.

Спираль Фибоначчи

Чтобы увидеть и прочувствовать всю связь числового ряда Фибоначчи и золотого сечения, нужно снова взглянуть на формулы.

Иными словами, с 9-го члена последовательности Фибоначчи мы начинаем получать значения золотого сечения. И если визуализировать всю эту картину, то мы увидим, как последовательность Фибоначчи создает прямоугольники все ближе и ближе к золотому прямоугольнику. Вот такая вот связь.

Теперь поговорим о спирали Фибоначчи, ее еще называют «золотой спиралью».

Золотая спираль — логарифмическая спираль, коэффициент роста которой равен φ4, где φ — золотое сечение.

В общем и целом, с точки зрения математики, золотое сечение — идеальная пропорция. Но на этом ее чудеса только начинаются. Принципам золотого сечения подчинен почти весь мир, эту пропорцию создала сама природа. Даже эзотерики, и те, видят в ней числовую мощь. Но об этом точно не в этой статье будем говорить, поэтому, чтобы ничего не пропустить, можете подписаться на обновления сайта.

Золотое сечение в природе, человеке, искусстве

Прежде, чем мы начнем, хотелось бы уточнить ряд неточностей. Во-первых, само определение золотого сечения в данном контексте не совсем верно. Дело в том, что само понятие «сечение» — это термин геометрический, обозначающий всегда плоскость, но никак не последовательность чисел Фибоначчи.

И, во-вторых, числовой ряд и соотношение одного к другому, конечно, превратили в некий трафарет, который можно накладывать на все, что кажется подозрительным, и очень радоваться, когда есть совпадения, но все же, здравый смысл терять не стоит.

Однако, «все смешалось в нашем королевстве» и одно стало синонимом другого. Так что в общем и целом, смысл от этого не потерялся. А теперь к делу.

Вы удивитесь, но золотое сечение, точнее пропорции максимально приближенные к нему, можно увидеть практически везде, даже в зеркале. Не верите? Давайте с этого и начнем.

Знаете, когда я училась рисовать, то нам объясняли, как проще строить лицо человека, его тело и прочее. Все надо рассчитывать, относительно чего-то другого.

Все, абсолютно все пропорционально: кости, наши пальцы, ладони, расстояния на лице, расстояние вытянутых рук по отношению к телу и так далее. Но даже это не все, внутреннее строение нашего организма, даже оно, приравнивается или почти приравнивается к золотой формуле сечения. Вот какие расстояния и пропорции:

    от плеч до макушки к размеру головы = 1:1.618

    от пупка до макушки к отрезку от плеч до макушки = 1:1.618

    от пупка до коленок и от коленок до ступней = 1:1.618

    от подбородка до крайней точки верхней губы и от нее до носа = 1:1.618


Разве это не удивительно!? Гармония в чистом виде, как внутри, так и снаружи. И именно поэтому, на каком-то подсознательном что-ли уровне, некоторые люди не кажутся нам красивыми, даже если у них крепкое подтянутое тело, бархатная кожа, красивые волосы, глаза и прочее и все остальное. Но, все равно, малейшее нарушений пропорций тела, и внешность уже слегка «режет глаза».

Короче говоря, чем красивее кажется нам человек, тем ближе его пропорции к идеальным. И это, кстати, не только к человеческому телу можно отнести.

Золотое сечение в природе и ее явлениях

Классическим примером золотого сечения в природе является раковина моллюска Nautilus pompilius и аммонита. Но это далеко не все, есть еще много примеров:

    в завитках человеческого уха мы можем увидеть золотую спираль;

    ее же (или приближенную к ней) в спиралях, по которым закручиваются галактики;

    и в молекуле ДНК;

    по ряду Фибоначчи устроен центр подсолнуха, растут шишки, середина цветов, ананас и многие другие плоды.

Друзья, примеров настолько много, что я просто оставлю тут видеоролик (он чуть ниже), чтобы не перегружать текстом статью. Потому что, если эту тему копать, то можно углубиться в такие дебри: еще древние греки доказывали, что Вселенная и, вообще, все пространство, — спланировано по принципу золотого сечения.

Вы удивитесь, но эти правила можно отыскать даже в звуке. Смотрите:

    Наивысшая точка звука, вызывающая боль и дискомфорт в наших ушах, равна 130 децибелам.

    Делим пропорцией 130 на число золотого сечения φ = 1,62 и получаем 80 децибел — звук человеческого крика.

    Продолжаем пропорционально делить и получаем, скажем так, нормальную громкость человеческой речи: 80 / φ = 50 децибел.

    Ну, а последний звук, который получим благодаря формуле – приятный звук шепота = 2,618.

По данному принципу можно определить оптимально-комфортное, минимальное и максимальное число температуры, давления, влажности. Я не проверяла, и не знаю, насколько эта теория верна, но, согласитесь, звучит впечатляюще.

Абсолютно во всем живом и не живом можно прочесть высшую красоту и гармонию.

Главное, только не увлекаться этим, ведь если мы хотим что-то в чем-то увидеть, то увидим, даже если этого там нет. Вот я, например, обратила внимание на дизайн PS4 и увидела там золотое сечение =) Впрочем, эта консоль настолько классная, что не удивлюсь, если дизайнер, и правда, что-то там мудрил.

Золотое сечение в искусстве

Тоже очень большая и обширная тема, которую стоит рассмотреть отдельно. Тут лишь помечу несколько базовых моментов. Самое примечательное, что многие произведения искусства и архитектурные шедевры древности (и не только) сделаны, по принципам золотого сечения.

    Египетские и пирамиды Майя, Нотр-дам де Пари, греческий Парфенон и так далее.

    В музыкальных произведениях Моцарта, Шопена, Шуберта, Баха и прочих.

    В живописи (там это наглядно видно): все самые знаменитые картины известных художников сделаны с учетом правил золотого сечения.

    Эти принципы можно встретить и в стихах Пушкина, и в бюсте красавицы Нефертити.

    Даже сейчас правила золотой пропорции используются, например, в фотографии. Ну, и конечно, во всем остальном искусстве, включая кинематограф и дизайн.

Золотые котики Фибоначчи

Ну и, наконец, о котиках! Вы задумывались о том, почему все так любят котеек? Они же ведь заполонили Интернет! Котики везде и это чудесно =)

А все дело в том, что кошки — идеальны! Не верите? Сейчас докажу вам это математически!

Видите? Тайна раскрыта! Котейки идеальны с точки зрения математики, природы и Вселенной =)

* Я шучу, конечно. Нет, кошки, действительно, идеальны) Но математически их никто не измерял, наверное.

На этом, в общем-то, все, друзья! Мы увидимся в следующих статьях. Удачи вам!

P. S. Изображения взяты с сайта medium.com.

/ Forens.Ru — 2008.

библиографическое описание:
Золотое сечение в анатомии человека / Forens.Ru — 2008.

Последние поступления в библиотеку

Аспекты молекулярно-генетического исследования волос человека в зависимости от их морфологических характеристик. II. Особенности генотипирования / Александрова В.Ю., Богатырева Е.А., Куклев М.Ю., Лапенков М.И., Плахина Н.В. // Судебно-медицинская экспертиза. — М., 2019. — №2. — С. 22-25.

Возможность определения расстояния выстрела из охотничьего оружия 12-го калибра по признакам повреждений одежды и соответствующим им математическим моделям / Суворов А.С., Белавин А.В., Макаров И.Ю., Страгис В.Б., Райзберг С.А., Гюльмамедова Н.Д. // Судебно-медицинская экспертиза. — М., 2019. — №2. — С. 19-21.

Комплексная судебная экспертиза изображений внешнего облика человека / Россинская Е.Р., Зинин А.М. // Судебно-медицинская экспертиза. — М., 2019. — №2. — С. 15-18.

Структура смертельной механической травмы в России (по материалам 2003-2017 гг.) / Ковалев А.В., Макаров И.Ю., Самоходская О.В., Куприна Т.А. // Судебно-медицинская экспертиза. — М., 2019. — №2. — С. 11-14.

Методологические подходы к производству судебно-медицинской экспертизы состояния здоровья детей в случаях пренебрежения их нуждами / Ковалев А.В., Кеменева Ю.В. // Судебно-медицинская экспертиза. — М., 2019. — №2. — С. 4-10.

Каждый человек, сталкивающийся с геометрией объектов в пространстве, хорошо знаком с методом золотого сечения. Его применяют в искусстве, дизайне интерьеров и архитектуре. Еще в прошлом столетии золотое сечение оказалось таким популярным, что теперь многие сторонники мистического видения мира дали ему другое название — универсальное гармоническое правило. Особенности этого метода стоит рассмотреть подробнее. Это поможет узнать, почему он пользуется интересом сразу в нескольких сферах деятельности — искусстве, архитектуре, дизайне.

Суть универсальной пропорции


Принцип золотого сечения является всего лишь зависимостью чисел. Однако многие относятся к нему предвзято, приписывая этому явлению какие-то мистические силы. Причина кроется в необычных свойствах правила:

  • Многие живые объекты обладают пропорциями туловища и конечностей, приближенными к показаниям золотого сечения.
  • Зависимости 1,62 или 0,63 определяют отношения размеров лишь для живых существ. Объекты, относящиеся к неживой природе, очень редко соответствуют значению гармонического правила.
  • Золотые пропорции строения туловища живых существ представляют собой неотъемлемое условие выживания многих биологических видов.

Золотое сечение можно найти в строении тел различных животных, стволов деревьев и корней кустарников. Сторонники универсальности этого принципа стараются доказать, что его значения жизненно важны для представителей живого мира.

Можно объяснить метод золотого сечения, используя образ куриного яйца. Отношение отрезков от точек скорлупы, в равной степени удаленных от центра тяжести, равно показателю золотого сечения. Самым важным для выживания птиц показателем яйца является именно его форма, а не прочность скорлупы.

Важно! Золотое сечение рассчитано на основе измерений множества живых объектов.

Происхождение золотого сечения


Об универсальном правиле было известно еще математикам Древней Греции. Ее использовал Пифагор и Евклид. В известном архитектурном шедевре — пирамиде Хеопса отношение размеров основной части и длины сторон, а также барельефов и декоративных деталей соответствуют гармоническому правилу.

Метод золотого сечения взяли на вооружение не только архитекторы, но и художники. Тайна гармонической пропорции считалась одной из величайших загадок.

Первым, документально заверившим универсальную геометрическую пропорцию, был монах-францисканец Лука Пачоли. Его способности к математике были блестящи. Широкое признание золотое сечение получило после публикации результатов исследований золотого сечения Цейзинга. Он изучал пропорции тела человека, древние памятники скульптуры, растения.

Как рассчитали золотое сечение


Разобраться, что такое золотое сечение, поможет объяснение, основанное на длинах отрезков. К примеру, внутри большого находится несколько маленьких. Тогда длины небольших отрезков относятся к общей длине большого отрезка, как 0,62. Такое определение помогает разобраться, на сколько частей можно поделить определенную линию, чтобы она соответствовала гармоническому правилу. Еще один плюс использования этого метода — можно узнать, каким должно быть отношение самого большого отрезка к длине всего объекта. Это соотношение равняется 1,62.

Такие данные можно представить, как пропорции измеряемых объектов. Сначала их выискивали, подбирая опытным путем. Однако теперь точные соотношения известны, поэтому построить объект в соответствии с ними не составит труда. Золотое сечение находят такими путями:

  • Построить прямоугольный треугольник. Разбить одну из его сторон, а затем провести перпендикуляры с секущими дугами. При проведении вычислений следует от одного конца отрезка построить перпендикуляр, равный ½ его длины. Затем достраивают прямоугольный треугольник. Если отметить точку на гипотенузе, которая покажет длину перпендикулярного отрезка, то радиус, равняющийся оставшейся части линии, рассечет основание на две половины. Получившиеся линии будут соотноситься друг с другом согласно золотому сечению.
  • Универсальные геометрические значения получают и другим способом — выстраивая пентаграмму Дюрера. Она является звездой, которая помещена в окружность. В ней находится 4 отрезка, длины которых соответствуют правилу золотого сечения.
  • В архитектуре гармоническая пропорция применяется в модифицированном виде. Для этого прямоугольный треугольник следует разбивать по гипотенузе.

Важно! Если сравнивать с классическим понятием метода золотого сечения, версия для архитекторов имеет соотношение 44:56.

Если в традиционном толковании гармонического правила для графики, его рассчитывали как 37:63, то для архитектурных сооружений чаще использовали 44:56. Это обусловлено необходимостью сооружать высотные постройки.

Секрет золотого сечения


Если в случае с живыми объектами золотое сечение, проявляющееся в пропорциях тела людей и животных можно объяснить необходимостью приспосабливаться к среде, то в использование правила оптимальных пропорций в 12 веке для постройки домов было в новинку.

Парфенон, сохранившийся со времен Древней Греции, был возведен по методу золотого сечения. Множество замков вельмож средних веков создавали с параметрами, соответствующими гармоническому правилу.

Золотое сечение в архитектуре


Множество построек древности, которые сохранились до сих пор, служат подтверждением тому, что архитекторы из эпохи средневековья были знакомы с гармоническим правилом. Очень хорошо заметно стремление соблюсти гармоническую пропорцию при сооружении церквей, значимых общественных зданий, резиденций королевских особ.

К примеру, собор Парижской Богоматери возведен таким образом, что многие из его участков соотносится с правилом золотого сечения. Можно найти немало произведений архитектуры 18 века, которые были построены в согласии с этим правилом. Правило применяли и многие русские архитекторы. Среди них был и М. Казаков, который создавал проекты усадеб и жилых зданий. Он проектировал здание сената и Голицынскую больницу.

Естественно, дома с таким отношением частей возводили и до открытия правила золотого сечения. Например, к таким зданиям относится церковь Покрова на Нерли. Красота здания приобретает еще большую загадочность, если учесть, что здание покровской церкви было возведено в XVIII веке. Однако современный вид постройка приобрела после реставрации.

В трудах о золотом сечении упоминается, что в архитектуре восприятие объектов зависит от того, кто наблюдает. Пропорции, образованные при помощи золотого сечения, дают максимально спокойное соотношение частей строения относительно друг друга.

Ярким представителем из ряда строений, соответствующих универсальному правилу, является памятник архитектуры Парфенон, возведенный еще в пятом веке до н. э. Парфенон устроен с восьмью колоннами по меньшим фасадам и с семнадцатью — по большим. Храм возведен из благородного мрамора. Благодаря этому использование раскраски ограничено. Высота строения относится к его длине 0,618. Если разделить Парфенон по пропорциям золотого сечения, получатся определенные выступы фасада.

Все эти сооружения имеют одно сходство — гармоничность сочетания форм и отменное качество строительства. Это объясняется использованием гармонического правила.

Важность золотого сечения для человека


Архитектура древних построек и средневековых домов довольно интересна и для дизайнеров современности. Это объясняется такими причинами:

  • Благодаря оригинальному оформлению домов можно не допустить надоевших штампов. Каждое такое здание является архитектурным шедевром.
  • Массовое применение правила для украшения скульптур и статуй.
  • Благодаря соблюдению гармонических пропорций взгляд притягивается к более важным деталям.

Важно! При создании проекта постройки и создании внешнего облика архитекторы средневековья применяли универсальные пропорции, опираясь на закономерности человеческого восприятия.

Сегодня психологи пришли к выводу, что принцип золотого сечения — не что иное, как человеческая реакция на определенное соотношение размеров и форм. В одном эксперименте группе испытуемых предложили согнуть бумажный лист таким образом, чтобы стороны получились с оптимальными пропорциями. В 85 результатах из 100 люди сгибали лист практически в точном соответствии с гармоническим правилом.

Как утверждают современные ученые, показатели золотого сечения относятся скорее к сфере психологии, нежели характеризуют закономерности физического мира. Это объясняет, почему к нему проявляется такой интерес со стороны мистификаторов. Однако при построении объектов согласно этому правилу человек воспринимает их более комфортно.

Использование золотого сечения в дизайне


Принципы использования универсальной пропорции все чаще используют при строительстве частных домов. Особое внимание уделяется соблюдению оптимальных пропорций конструкции. Немало внимания уделяют правильному распределению внимания внутри дома.

Современная интерпретация золотого сечения уже не относится лишь к правилам геометрии и формы. Сегодня принципу гармонических пропорций подчиняются не только размеры деталей фасада, площадь комнат или длины фронтонов, но и цветовая палитра, используемая при создании интерьера.

Соорудить гармоничное строение на модульном основании гораздо проще. Многие отделения и помещения в этом случае выполняются как отдельные блоки. Они проектируются в строгом соответствии с гармоническим правилом. Возвести здание как набор отдельных модулей, значительной проще, чем создавать единую коробку.

Многие фирмы, занимающиеся сооружением загородных домов, при создании проекта соблюдают гармоническое правило. Это позволяет создать у клиентов впечатление, что конструкция здания детально проработана. Такие дома обычно описывают, как наиболее гармоничные и комфортные в использовании. При оптимальном выборе площадей комнат жильцы психологически ощущают успокоение.

Если дом возведен без учета гармонических пропорций, можно создать планировку, которая будет по соотношению размеров стен приближена к показателю 1:1,61. Для этого в комнатах устанавливают дополнительные перегородки, или переставляют предметы мебели.

Аналогично меняют габариты дверей и окон таким образом, чтобы проем имел ширину, показатель которой меньше значения высоты в 1,61 раза.

Сложнее подбирать цветовые решения. В этом случае можно соблюдать упрощенное значение золотого сечения — 2/3. Основным цветовым фоном следует занять 60% пространства комнаты. Оттеняющий оттенок занимает 30% помещения. Оставшаяся площадь поверхностей закрашивается близкими друг к другу тонами, усиливающими восприятие выбранного цвета.

Внутренние стены комнат делят горизонтальной полосой. Ее располагают в 70 см от пола. Высота мебели должна находиться в гармоническом соотношении с высотой стен. Это правило относится и к распределению длин. К примеру, диван должен иметь габариты, которые бы оказались не меньше 2/3 длины простенка. Площадь помещения, которая занята предметами мебели, тоже должна иметь определенное значение. Она относится к общей площади всего помещения как 1:1,61.

Золотая пропорция сложно применима на практике ввиду наличия всего одного числа. Именно поэтому. Проектирую гармоничные строения, пользуются рядом чисел Фибоначчи. Благодаря этому обеспечивается разнообразие вариантов форм и пропорций деталей строения. Ряд чисел Фибоначчи также носит название золотого. Все значения строго соответствуют определенной математической зависимости.

Кроме ряда Фибоначчи, в современной архитектуре применяют и другой метод проектирования — принцип, заложенный французским архитектором Ле Корбюзье. При выборе этого способа отправной единицей измерения выступает рост владельца дома. Исходя из этого показателя рассчитывают размеры здания и внутренних помещений. Благодаря этому подходу дом получается не только гармоничным, но и приобретает индивидуальность.

Любой интерьер приобретет более завершенный вид, если в нем использовать карнизы. При использовании универсальных пропорций можно вычислить его размер. Оптимальными показателями являются 22,5, 14 и 8,5 см. Устанавливать карниз следует по правилам золотого сечения. Маленькая сторона декоративного элемента должна относиться к большей так, как относится к сложенным значениям двух сторон. Если большая сторона будет равна 14 см, то маленькую стоит сделать 8,5 см.

Придать помещению уюта можно путем деления стеновых поверхностей при помощи гипсовых зеркал. Если стена поделена бордюром, от оставшейся большей части стены следует отнять высоту карнизной планки. Для создания зеркала оптимальной длины от бордюра и карниза следует отступить одинаковое расстояние.

Заключение


Дома, построенные по принципу золотого сечения, действительно получаются очень удобными. Однако цена постройки таких строений довольно высока, поскольку стоимость стройматериалов ввиду нетипичных размеров увеличивается на 70%. Этот подход совершенно не нов, поскольку большинство домов прошлого века создавали исходя из параметров хозяев.

Благодаря использованию метода золотого сечения в строительстве и дизайне здания получаются не только комфортабельными, но и долговечными. Они выглядят гармонично и привлекательно. Интерьер тоже оформляют по универсальной пропорции. Это позволяет грамотно использовать пространство.

В таких комнатах человек ощущает себя максимально комфортно. Соорудить дом с использованием принципа золотого сечения можно самостоятельно. Главное — рассчитать нагрузки на элементы строения, и правильно выбрать материалы.

Метод золотого сечения используют в дизайне интерьера, размещая в комнате декоративные элементы определенных размеров. Это позволяет придать помещению уюта. Цветовые решения тоже выбирают в соответствии с универсальными гармоническими пропорциями.

Что такое «золотое сечение»?. На протяжении веков «золотое сечение»… | by Сергей Базанов | Paradox Review

На протяжении веков «золотое сечение» считается самым прекрасным соотношением в искусстве и архитектуре.

«Золотое сечение», называемое также «золотая пропорция» или «золотое соотношение», было обнаружено во многих самых знаменитых творениях человечества — от древнегреческого Парфенона до творений Сальвадора Дали. Возможно, вы уже читали на эту тему статью «Нереализованное влияние золотого сечения».

Не важно, считаете ли вы, что эта божественная пропорция является поистине знамением красоты или просто предвзятым выбором, но, без сомнения, это одно из самых интригующих чисел в мире. Поэтому, сейчас мы поговорим о математической основе «золотого сечения».

Впервые о «золотом сечении» упоминает древнегреческий математик Евклид около 300 лет до нашей эры. В шестой книге своего трактата «Начала» Евклид дает определение «золотого сечения». Он поручает нам взять отрезок линии и разделить его на два меньших сегмента так, что отношение всей линии (a + b) к отрезку a будет таким же, как отношение отрезка a к сегменту b:

Что эквивалентно пропорции:

Евклид использовал «золотое сечение» для построения правильного пятиугольника. Отношение диагонали правильного пятиугольника к его стороне равно золотому сечению. Правильный пятиугольник (пентагон) еще называют «золотой пятиугольник».

«Золотое сечение» часто представляют как «Золотой прямоугольник» — прямоугольник с отношением длин сторон примерно 1,618:1.

Этот прямоугольник обладает тем свойством, что если от него отрезать квадрат, то снова получится золотой прямоугольник меньшего размера и так до бесконечности.

Золотой прямоугольник.

На самом деле, соотношение сторон «золотого прямоугольника» — это иррациональное значение 1,618034…, т.е. бесконечная десятичная дробь, не имеющая периода.

Это число и есть пропорция «золотого сечения», оно обозначается греческой буквой Фи в честь древнегреческого скульптора и архитектора Фидия, мастера, воплотившего его в своих работах.

Чтобы найти значение 1,618034…, мы должны решить пропорцию, показанную выше. Для простоты предположим, что b = 1 и a = x и найдем решение для x.

a = x, b = 1

Шаг 1. Сделаем перекрестное умножение:

Шаг 2. Приведем уравнение к 0:

Шаг 3. Решим квадратное уравнение:

Поскольку мы работаем с длинами, нам нужно только положительное решение:

Решение найдено! «Золотое сечение» выражается, как дробь.
Для проверки подставим a = 1. 618 и b = 1, чтобы убедиться, что наша пропорция верная:

Обратите внимание, как интересно: мы можем написать «золотое соотношение» при помощи самого себя. Это потрясающе!

Что эквивалентно:

Пойдем дальше… Заменим φ = 1 + 1 / φ для φ в знаменателе:

И еще дальше!

Мы могли бы продолжать делать это бесконечно. Оказывается, «Золотое сечение» может быть записано как бесконечная цепная дробь.

Мы можем использовать непрерывную дробь, чтобы раскрыть связь «золотого сечения» с последовательностью Фибоначчи.

Для начала мы немного изменим нашу бесконечную дробь — добавим индексы, чтобы показать, как следующее значение φ(n+1) может быть получено из предыдущего значения φ(n).

Так как это бесконечная цепная дробь, с ростом n искомое значение приближается к истинному значению φ.

Теперь допустим, что φ(0) = 1 и найдем φ(1).

Продолжим вычислять следующеезначение — φ(2)

И далее… φ(3), φ(4)…

Посмотрите! Это же последовательность Фибоначчи! Каждое приближение — это отношение двух соседних чисел Фибоначчи.

По мере продвижения к каждому новому последовательному вычислению мы обнаруживаем, что наше искомое значение все ближе и ближе приближается к его истинному «Золотому сечению».

На девятом члене последовательности Фибоначчи мы уже получаем значения «золотого сечения», с тремя верными цифрами после запятой.

В самом деле, limit F(n+1)/F(n) при n→∞ (где F(n) и F(n+1) представляют n и n+1 числа в последовательности Фибоначчи) сходится к φ.

Если визуализировать этот процесс, то мы увидим, как последовательность Фибоначчи создает прямоугольники всё ближе и ближе к «Золотому прямоугольнику».

Прямоугольник Фибоначчи.

Хотя в мире дизайна продолжаются споры о том, является ли «золотое сечение» оптимальной пропорцией или нет, можно с уверенностью сказать, что оно математически совершенно и не перестает нас удивлять.

Что такое золотое сечение и правда ли оно повсюду

Что такое золотое сечение

Это соотношение двух неравных чисел, при котором большее так же относится к меньшему, как сумма этих чисел к большему. Золотое сечение равно примерно 1,618, или 1,62, если округлить, и обозначается греческой буквой φ, «фи» — от имени древнегреческого скульптора Фидия. Считается, что он использовал такие пропорции при оформлении Парфенона.

Наиболее известные графические представления золотого сечения — это прямоугольник с соотношением сторон примерно 62:48 и построенная в нём спираль.

1 / 0

«Золотой прямоугольник» можно разделить на такие же, только меньшего размера. Изображение: Dicklyon / Wikimedia Commons

2 / 0

«Золотая спираль» (красная), вписанная в «золотой прямоугольник». Изображение: Silverhammermba & Jahobr / Wikimedia Commons

Золотое сечение тесно связано с числами Фибоначчи. Это ряд чисел, каждое из которых равняется сумме двух предыдущих: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34 и так далее. Чем дальше продолжается этот ряд, тем ближе соотношение соседних чисел в нём к 1,618. Например, 3/2=1,5; 8/5=1,6, а 34/21= 1,619.

Почему золотое сечение так популярно

Впервые им заинтересовались ещё древнегреческие математики Пифагор и Евклид. Они считали, что на числах построено всё мироздание и с их помощью можно объяснить любой феномен. Неудивительно, что элегантное соотношение так заинтересовало античных мыслителей.

Вслед за ними золотым сечением увлеклись многие выдающиеся учёные и деятели искусства. Например, Леонардо да Винчи, Альбрехт Дюрер, Иоганн Кеплер, Ле Корбюзье, Сальвадор Дали и Ричард Пенроуз.

Его считают «божественной пропорцией»

Название «золотое сечение» придумал немецкий математик XIX века Мартин Ом. До него это соотношение именовали «божественной пропорцией».

Из‑за приписываемых характеристик золотое сечение старались применять как можно чаще. Так, во времена Возрождения это число считалось идеальным способом для выбора размера. «Золотой прямоугольник», например, нередко использовали при создании книг и картин. А линию пояса называли границей золотого сечения человеческого тела.

Некоторые и поныне считают эту пропорцию секретом привлекательности и примером универсальной гармонии, приятной человеческому глазу. Например, о золотом сечении любят говорить пластические хирурги. А ещё это число популярно как никакое другое в математике.

Его можно встретить в природе

Числа Фибоначчи и спирали, подобные золотому сечению, часто обнаруживаются в природе. Например, в количестве лепестков у цветов или форме растений.

Часть растения эониума. Фото: Max Ronnersjö / Wikimedia Commons

Его обнаруживают в произведениях архитектуры и искусства

Например, «божественные пропорции» находят в Парфеноне и египетских пирамидах. Также широко распространено заблуждение, что «Мона Лиза» написана в соответствии с числом φ.

Почему универсальность золотого сечения — миф

Однако при тщательном изучении становится понятно, что эта пропорция не так уж всеобъемлюща.

Божественность золотого сечения преувеличивается

Золотому сечению придают больше значения, чем есть в действительности. Красивые узоры и налёт таинственности сделали из обычного геометрического соотношения математический миф, который, к примеру, очень любят нумерологи.

Чаще всего вещи причисляют к золотому сечению с большими допущениями. Ни о какой точности и математической универсальности в таком случае говорить не приходится. Поэтому при желании можно обнаружить «божественные пропорции» где угодно.

В природе золотое сечение не так уж распространено

Его находят далеко не везде. Например, у маков всегда четыре лепестка, а в ряд Фибоначчи четвёрка не входит. Также нередко встречается четырёхлистный клевер. Раковины морских моллюсков похожи на спираль золотого сечения, но всё-таки другие. У них больше витков, и расстояние между ними меньше. Ни у одного моллюска коэффициент скручивания раковины и близко не равен 1,62. Это видно даже невооружённым глазом:

1 / 0

Спираль морского моллюска. Изображение: Florian Elias Rieser / Wikimedia Commons

2 / 0

Спираль Фибоначчи, близкая к золотому сечению. Изображение: Jahobr / Wikimedia Commons

В человеческом теле же столько точек, от которых можно производить измерение, что при желании реально найти золотое сечение где угодно. Вот только с большой вероятностью у разных людей «божественную пропорцию» придётся искать в разных местах, так как мы можем сильно отличаться друг от друга.

В искусстве оно тоже встречается не так уж часто

Изучение 565 картин выдающихся художников показало, что в среднем соотношение сторон в работах составляет 1,34. Это явно не дотягивает до золотого сечения. Учёные не находят его даже в произведениях Леонардо да Винчи.

Археологические исследования не подтверждают и того, что древние греки могли использовать золотое сечение при постройке Парфенона. Из более чем 100 памятников древнегреческой архитектуры это число нашлось в пропорциях только четырёх объектов: башни, алтаря, гробницы и надгробия. Не могли пользоваться золотым сечением и древние египтяне, не обладавшие достаточным уровнем технологий, чтобы точно высчитывать пропорции.

Кому золотое сечение может быть полезно на самом деле

Современная математика использует золотое сечение и числа Фибоначчи при описании фракталов — фигур, которые проявляют самоподобие.

Фрактальная форма кочана капусты Романеско. Фото: Ivar Leidus / Wikimedia Commons

Знание о числе φ играет важную роль в изучении хаоса и изменяющихся (динамических) систем. Оно помогает понять, как природа развивается и самоорганизуется.

Также числа Фибоначчи полезны при решении некоторых сложных задач. Например, с помощью этих чисел советский математик Юрий Матиясевич доказал, что не существует универсального алгоритма решения уравнений с как минимум двумя неизвестными.

Читайте также 💆‍♂️👩‍🔬

Золотое сечение в искусстве — одна из самых крутых вещей, с которыми вы когда-либо сталкивались · Craftwhack

«Что делает одно число настолько захватывающим, что оно сохраняется в нашем воображении более двух тысяч лет?» — Гэри Б., Мейснер Золотое сечение: божественная красота математики

Мы собираемся погрузиться в то, что мне больше всего нравится изучать на уроках истории искусства: Золотое сечение.

Я достаточно знаю о золотом сечении, чтобы в равной степени восхищаться им и полностью сбиваться с толку.

Это одна из тех концепций, которая зажигает ваш мозг, когда вы открываете, но ее трудно понять, если вы не склонны к математике.

Чем больше вы узнаете об этом, тем больше вы будете видеть пропорции Золотой спирали везде .

К счастью для нас, есть горстка людей, которые ясно понимают эту концепцию и могут объяснить ее остальным из нас, пустоголовых дураков.

Здесь я сосредоточусь в основном на золотом сечении в искусстве и архитектуре, но не могу не коснуться и того, как оно проявляется в природе.Надевайте свои геймерские штаны, ребята!

Что такое золотое сечение?

Определение

Золотое сечение — это иррациональное число, приблизительно равное 1,618, которое широко распространено в природе, искусстве, архитектуре и дизайне. (Другие его названия: золотая середина, золотое сечение, Фи (в математике), божественное сечение, золотое число, последовательность Фибоначчи. )

На самом деле последовательность Фибоначчи очень тесно связана с золотым сечением, но не совсем то же самое. Это один из примеров математической путаницы.

Прямоугольник золотого сечения

Визуально это прямоугольник, который при разрезании на квадрат приводит к тому, что оставшийся прямоугольник имеет те же пропорции, что и исходный прямоугольник.

Я абсолютно не могу объяснить математику, стоящую за этим, поэтому перейдите сюда, чтобы понять это более практичным способом.

Попробуйте это: Если вам хочется нарисовать прямоугольник с использованием золотого сечения , вот как это сделать:

  • Нарисовать квадрат.
  • Нарисуйте точку посередине нижней линии.
  • Проведите линию от этой точки до любого противоположного угла.
  • Опустите эту линию вниз, чтобы она перекрывала нижнюю линию квадрата.
  • Там, где он заканчивается, вы можете нарисовать линейку и далее, чтобы сделать свой прямоугольник.
  • Обратите внимание, что новый прямоугольник, который вы только что нарисовали, можно разделить в тех же пропорциях, что и большой прямоугольник. Так может каждый последующий маленький прямоугольник, который вы нарисуете!

Сделайте еще один шаг, разбив новый прямоугольник на более мелкие золотые прямоугольники, а затем нарисовав спираль, используя линии, идущие от одного угла к противоположному углу в каждом квадрате золотого прямоугольника.

А? Вот, взгляните на это:

Я также почувствовал необходимость нарисовать страницу с символами фи, и, пожалуйста, обратите внимание, что я использовал прекрасный золотой цвет в соответствии с темой.

Кто открыл золотое сечение?

Я сделал! В начале 1600-х гг. Дж.К.

Согласно этому сайту, Евклид объяснил формулу золотого сечения в своей книге Элементы, , хотя он ничего не назвал. Непонятно, откуда он мог узнать об этой идее.

Число фи было названо (в 1900-х годах) в честь греческого скульптора и математика Фидия, жившего с 500 г. до н.э. по 432 г. до н.э.

Золотое сечение в природе

Это так, так круто и заставит вас полюбить природу, даже если раньше вы ее ненавидели. Природа пронизана золотым сечением в растениях, лицах, микроскопических предметах.

Золотое сечение имеет тенденцию проявляться в природе во многих цветочных образованиях (подсолнух), узорах ракушек (наутилус) и даже в галактиках!

Прочтите эту статью о примерах золотого сечения в природе, чтобы поразить воображение.

изображения предоставлены: ураган, подсолнух

Ваше лицо — это золотое сечение

Держите это возвращение под рукой, когда в следующий раз вам будет не хватать слов. Скорее всего, получатель не поймет, о чем вы говорите, и вы сможете похихикать над своей секретной шуткой.

Предположительно, если вы посмотрите прямо на человеческое лицо, то чем ближе оно к идеальной красоте, тем больше измерений вы сможете провести по всему нему, и получится золотое сечение.

Вот несколько примеров золотой середины идеального лица:

  • Разделите высоту вашего лица (от макушки головы до нижней части подбородка) на ширину вашего лица в самом широком месте, и вы получите где-то прямо около фи.(1.618)
  • Расстояние между вашими глазами примерно равно ширине одного глаза.
  • Расстояние от линии роста волос до промежутка между глазами, от промежутка между глазами до кончика носа и от кончика носа до основания подбородка должно быть почти одинаковым для достижения идеальной красоты.

Я измерил этого симпатичного чувака и обнаружил, что его 3 измерения по вертикали не совпадают, а высота его лица, деленная на ширину лица, оказалась примерно равной 1.72 дюйма.

Очевидно, нам пришлось бежать из-за его прически, но получилось, что он близок.

Попробуйте это: Распечатайте фотографию своего лица и измерьте ее, чтобы увидеть, насколько вы совершенны. Я еще этого не делал, но предполагаю, что мой гигантский лоб отбросит все. 🙂

источник изображения

Помните мой пост «Лица Мэти»? Там вы можете найти больше измерений лица, которые помогут при рисовании лиц.

Искусство золотого сечения

Хорошо, вот мы и подошли к хорошему.С тех пор как было открыто золотое сечение, неудивительно, что оно широко используется художниками, дизайнерами и архитекторами для определения наиболее визуально приятных пропорций для создания своих творений.

Есть много способов, которыми художники использовали золотое сечение в искусстве; использование самого золотого прямоугольника для определения композиции произведения искусства, использование пути спирали в золотом прямоугольнике и даже размещение важных предметов в измеренных точках внутри прямоугольника.

Искусство золотого сечения в живописи

Леонардо да Винчи

Вероятно, самым известным художником, использовавшим его, является Леонардо да Винчи.Да Винчи проиллюстрировал книгу, написанную Лукой Пачоли в конце 15 века и посвященную Божественной пропорции.

Он использовал это измерение во многих своих картинах, в том числе «Мона Лиза» и «Тайная вечеря». Этот пост показывает примеры золотого сечения в некоторых из его работ.

Попробуйте это: Мне было весело играть с прозрачным png прямоугольником золотого сечения над Моной Лизой. Вот png, если вы хотите скачать его и попробовать:

Вот Мона Лиза:

Я открыл ее в PicMonkey, затем добавил спираль Фибоначчи в качестве графического элемента «Добавь свой» и переместил ее, изменил ее размер, повернул всеми возможными способами.

Сальвадор Дали

Картина Сальвадора Дали «Таинство тайной вечери» (1955) широко упоминается как использующая золотое сечение, и было бы здорово разбить ее на следующие термины:

  • Комната представляет собой додекаэдр, который связан с золотым прямоугольником математическим образом, который я совершенно не понимаю.
  • Вся картина представляет собой золотой прямоугольник.
  • Стол и 2 ученика рядом с Христом идеально расположены в секциях золотого прямоугольника.

Пит Мондриан

Говорят, что Мондриан использовал золотое сечение в своих абстрактных картинах, но когда я применяю верный золотой прямоугольник к некоторым из них, ничто никогда не совпадает идеально.

Судя по всему, некоторые из его картин лучше соответствуют пропорциям, чем другие, так что, возможно, он не слишком придирался к точным размерам.

Интересно, что моя навязчивая идея поместить золотой прямоугольник поверх всего, до чего я могу дотянуться, привела меня к тому, что я поместил его поверх этой фотографии моделей Ива Сен-Лорана в платьях Мондриана перед картиной Мондриана.

Посмотрите, как красиво получается. 🙂

Марк Ротко

Посмотрите на его картины с новым чувством меры, а? Только некоторые из его картин работают таким образом, поэтому я не уверен, было ли это намеренно или нет с его стороны.

источник изображения

Искусство золотого сечения в фотографии

Начинающих фотографов обычно учат правилу третей, чтобы настроить композицию своих фотографий.

Он основан на идее, что ваша фотография может быть разделена на сетку из 9 равных пространств, а фокусы изображения должны совпадать с одной или несколькими точками, где линии пересекаются.

Фи-сетка используется в фотографии как еще один способ разбить изображение, следуя соотношению 1:1,618. Линии расположены в сетке, но они не расположены равномерно, как в сетке по правилу третей.

Обе сетки используются, чтобы помочь взгляду зрителя перемещаться по фотографии и создать более интересную композицию вместо того, чтобы просто поставить объект в центр.

Это приводит к некоторому смещению баланса, на которое нам интереснее смотреть.

Вот GIF из Википедии, показывающий фотографию, обрезанную с использованием правила третей и без его использования:

Вот фотография справа, обрезанная еще больше после того, как я наложил на нее фи-сетку. Какой ты предпочитаешь? Либо? Загрузите свои собственные шаблоны золотого сечения здесь.

Работа Анри Картье-Брессона — прекрасный пример золотого сечения в фотографии. И под «отлично» я подразумеваю, что очень весело накладывать его фотографии на спираль из золотого прямоугольника.Так приятно.

Искусство золотого сечения в архитектуре

Парфенон долгое время был одним из наиболее цитируемых архитектурных примеров Золотого сечения, но в последнее время некоторые дискредитируют его.

Предположительно, пространство между его столбцами соответствует пропорциям Золотого сечения. Я предполагаю, что теперь мы должны списать это на совпадение, поскольку никто не может доказать, что древние греки были чрезмерно вдохновлены этой идеей.

Великая пирамида Египта , по слухам, имеет пропорции золотого сечения, но некоторые люди также дискредитировали это.

Архитектура средневековья и эпохи Возрождения показывает, что золотое сечение используется в церквях и соборах по мере того, как популярность золотого сечения росла.

Говорят, что Собор Модены в Италии, Нотр-Дам и Шартрский собор были спроектированы с использованием пропорций золотого сечения.

Ле Корбюзье

Архитектор Ле Корбюзье разработал собственную систему измерений, основанную на золотом сечении.

Это называлось Система Modulor, и он оказал большое влияние на многих архитекторов того времени и с тех пор.Кто знает, сколько вещей было спроектировано по системе Ле Корбюзье.

Он спроектировал жилой комплекс Unite d’Habitation в Марселе и здание ООН в Нью-Йорке, используя пропорции золотого сечения.

В здании Организации Объединенных Наций ширина здания по сравнению с высотой каждых десяти этажей является золотым сечением.

Вот вдумчивая статья о золотом сечении в архитектуре.

Больше ресурсов по золотому сечению

Посмотрите этот короткометражный фильм Диснея 1959 года под названием Дональд в стране волшебства математики , чтобы увидеть особое появление Золотого сечения: