Самая низкая температура, максимальное количество осадков и другие рекорды погоды
В мороз нас часто интересует, какая самая низкая температура зафиксирована когда-либо метеорологами, а в жару, какая самая высокая. Вот некоторые рекорды погоды, которыми удивил людей щедрый на сюрпризы климат нашей планеты.
Самая высокая температура воздуха
Максимальная температура воздуха была зафиксирована 13 сентября 1922 года в Ливии, в городе Эль-Азизия. Термометры горожан тогда показывали 58,7 ̊ С. А самая высокая среднегодовая температура воздуха была в 1960 году, в Эфиопии (город Даллол) и равнялась она 34,4 ̊С.
Самая низкая температура воздуха
Минимальную температуру воздуха -89,2 ̊С (!) метеорологи зафиксировали на антарктической станции «Восток» в 1983 году. Там же, в Антарктиде, на полюсе недоступности в 1958 году зафиксированная самая низкая среднегодовая температура воздуха. Она равнялась -57,8 ̊С.
Максимальное количество осадков
Максимальное количество осадков за минуту 31,2 мм выпало 4 июля 1956 года в американском городе Юнионвилл.
Максимальное количество осадков за месяц, 9299 мм, выпало в июле 1861 года в индийском городе Черапунджи. Там же и в том же году зафиксировано максимальное годовое количество осадков – 26461 мм.
Максимальное и минимальное атмосферное давление
Максимальное атмосферное давление, приведённое к уровню моря, было зафиксировано 31 декабря 1968 года, в населённом пункте Агата Красноярского края и равнялось оно 812мм.рт.ст.
Минимальное атмосферное давление зафиксировали 24 сентября 1958 года в центре тайфуна вблизи Филиппин. Величина его была всего 654,8мм.рт.ст.
Рекорды скорости ветра
Максимальная скорость ветра (в порыве), 104 м/с, на высоте десять метров над поверхностью Земли, была замерена 12 апреля 1934 года в Америке, на горе Вашингтон. Там же и в это же время была замерена максимальная скорость ветра в течение нескольких минут – 101м/с.
Максимальная среднемесячная скорость ветра была зафиксирована в июле 1913 года на мысе Денисона (Антарктида) и равна она была 24,9м/с.
Среднегодовая максимальная скорость ветра, замеренная там же с апреля 1912 года по февраль 1913-го, равнялась 19,4м/с.
Максимальная высота снежного покрова зафиксирована весной, 9 мая (!) 1911 года в населённом пункте Тамарак, в Калифорнии. Толщина «снежного одеяла» была 11,5 метров!
Самая большая градина, упавшая 3 сентября 1970 года в американском городке Коффивилл, весила 750 грамм!
И ещё один рекорд природы: наибольшее число солнечных часов в году зафиксировано в пустыне Сахара. Их 4700 или 97% из всех возможных.
По материалам Новеёшего справочника необходимых знаний
«Другие ПОЧЕМУ
Где в России было зафиксировано самое высокое атмосферное давление на земле 
Учёные, занимающиеся изучением климата, из года в год проводят ежедневный сбор и анализ метеорологических данных, фиксируя атмосферные осадки и давление, скорость и направление ветра, температуру и влажность воздуха, облачность и продолжительность солнечной радиации, а также ряд иных показателей. На основе обработанных данных составляется карта климатических рекордов мира, 5 из которых принадлежат России.Ввиду особенностей географического положения, большой протяженности с запада на восток и с юга на север Россия является рекордсменом Евразии по количеству климатических поясов. Её обширная территория находится во владениях сразу 4 климатических зон и 3 подзон.
Арктический пояс, где хозяйничают длительные полярные ночи, характеризуется продолжительной зимой до 10 месяцев, суровым климатом и вечной мерзлотой.
Субарктический пояс несколько приветливее северного соседа, но тоже не изобилует теплом, поскольку максимально жаркая летняя температура достигает отметки +12°С, при этом в любое время года фиксируются обильные осадки и постоянные ветряки.
Континентальный пояс России охватывает наибольшую часть страны и из-за этого подразделяется еще на 3 подзоны: умеренно-континентальную, резко-континентальную, муссонную.
Субтропический пояс проходит вдоль черноморского побережья России, где сконцентрированы основные курортные города, в которых даже зимой температура редко опускается ниже 0°С.
Самый холодный населённый пункт земли
На берегу реки Индигирка, на востоке Республики Саха (Якутия) расположен самый холодный населённый пункт земли — село Оймякон, где 6 февраля 1933 года была зафиксирована температура -67,7° С. Кроме того, по официально неподтверждённым данным в 1924 году экспедиция геолога Обручева якобы зарегистрировала здесь температуру −71,2° C. Устроившийся на высоте 700 м над уровнем моря в защищённой от ветров котловине, Оймякон является местом жительства 512 человек, в том числе и детей, которым разрешается не посещать школу, если на термометре значится цифра ниже −52° С.
Греться жители Полюса холода северного полушария могут дома или же на краю села у термального источника с постоянной температурой воды не ниже +30° C, не зря же с якутского языка Оймякон переводится как «незамерзающие воды».
Но не стоит думать, что в приполярном селе не бывает лета, оно заглядывает в этот край и даже прогревает воздух до + 30° С, именно в это время морозоустойчивые селяне обзаводятся «оймяконским загаром».
Город с максимальной разницей климатических температур
Соперничащий с Оймяконом за титул самого холодного населённого пункта земли городок Верхоянск, является обладателем другого рекорда. Именно тут зафиксирован максимальный на планете перепад климатических температур равный 104,3° С: от минимальных -67,6°С зимой до +36.7°С летом.
Основанный в XVII веке на труднодоступном правом берегу реки Яна, Верхоянск был местом ссылки политзаключенных, которые лишь 28 дней в году могли наслаждаться безморозным периодом. Сейчас в городке проживает 1131 человек, которые и при экстремальном холоде, и при коротком, но засушливом лете занимаются привычным скотоводством и пушным промыслом.
Самое высокое атмосферное давление на земле
Экстремально высокое атмосферное давление на земле, составляющее 1083,2 гПа (мбара) или 812,4 мм ртутного столба, было зарегистрировано 31 декабря 1968 года на российской (тогда еще советской) метеорологической станции Агата. Данные параметры уже приведены к нулю градусов Цельсия и нормальной (на уровне моря и широте 45 градусов) величине ускорения силы тяжести.
Расположенная на берегу эвенкского озера Някшингда наблюдательная станция Агата кроме метеорологических измерений, осуществляет отслеживание гидрологических и агрометеорологических значений.
Абсолютно низкая среднегодовая температура
Максимально низкая среднегодовая температура воздуха, равная −60,2°С, была отмечена на российской антарктической станции «Восток», где самым теплым днем до сих пор остаётся 16 декабря 1957 года, когда термометр замер на отметке −13,6 °C.
Здесь же 21 июля 1983 года специалистами была зафиксирована самая отрицательная температура на земле за всю историю метеонаблюдений, составляющая −89,2 °С. Но, поскольку станция «Восток» находится на высоте 3488 метров над уровнем моря, она при сопоставлении параметров проигрывает титул абсолютного Полюса холода селу Оймякон.
Видео дня. После развода Муциниеце получает один удар за другим
Прекрасный мир, который мы потеряли. Часть 5/ Атмосферное давление: trinusss — LiveJournal
НачалоСегодня самым крупным сухопутным животным на Земле является африканский слон. Длина тела самца слона достигает 7.5 метров, высота более 3-х метров при весе до 6 тонн. При этом в день он потребляет от 280 до 340 кг. листьев, что весьма не мало. В Индии говорят, что если в деревне есть слон, то это значит, что она достаточно богата, чтобы его прокормить.
Самое маленькое наземное животное на Земле – это лягушка Paedophryne. Ее минимальная длина около 7,7 мм, а максимальная — не более 11,3 мм. Самой маленькой птицей, а к тому же ещё и самым маленьким теплокровным животным, считается птица колибри-пчёлка, живущая на Кубе, её размер всего 5 см.
Минимальные и максимальные размеры животных на нашей планете вовсе не случайны. Они определяются физическими параметрами среды на поверхности Земли, в первую очередь силой тяжести и давлением атмосферы. Сила тяжести пытается расплющить тело любого животного, превратив его в плоский блин, тем более, что организм животных на 60-80% состоит из воды. Биологические ткани, из которых состоит организм животных, пытаются в этом гравитации помешать, а атмосферное давление им в этом помогает. На поверхности Земли атмосфера давит с силой 1 кг на кв. см. поверхности, что является весьма ощутимым подспорьем в борьбе с силой притяжения Земли.
Интересно, что прочность материалов, из которых состоит организм животных, ограничивает не только максимальные размеры за счёт массы, но и минимальные размеры за счёт прочности костей скелета при уменьшении их толщины. Очень тонкие кости, которые расположены внутри маленького организма, просто не будут выдерживать возникающих нагрузок и сломаются или погнутся, не обеспечив необходимой жёсткости при выполнении движений. Поэтому, чтобы ещё уменьшить размеры организмов, необходимо изменить общую схему построения организма и перейти от внутреннего скелета к внешнему, то есть, вместо костей, покрытых мышцами и кожей, сделать внешний жёсткий панцирь, а все органы и мышцы разместить внутри. Проделав подобное преобразование мы получаем насекомых с их прочным внешним хитиновым покровом, который заменяет им скелет и даёт необходимую механическую жёсткость для обеспечения движения.
Но у подобной схемы построения живых организмов также есть свои ограничения на размер, в особенности при его увеличении, поскольку масса внешнего панциря будет расти очень быстро, в результате чего само животное будет становиться слишком тяжёлым и неповоротливым. При увеличении линейных размеров организма в три раза, площадь поверхности, которая имеет квадратичную зависимость от размеров, увеличится в 9 раз. А поскольку масса зависит от объёма вещества, который имеет кубическую зависимость от линейных размеров, то и объём, и масса увеличатся в 27 раз. При этом чтобы внешний хитиновый панцирь не разрушался при увеличении массы тела насекомого, его придётся делать всё толще, что ещё больше увеличит его вес. Поэтому предельные размеры насекомых сегодня составляют 20-30 см, при этом средний размер насекомых находится в районе 5-7 см, то есть граничит с минимальным размером позвоночных.
Самым крупным насекомым сегодня считается паук-птицеед «Терафоза Блонда», самый крупный из пойманных экземпляров которого имел размер 28 см.
Минимальный размер насекомых меньше миллиметра, самая маленькая оса из семейства мирамид имеет размер тела всего 0.12 мм, но там уже начинаются проблемы с построением многоклеточного организма, поскольку этот организм становится слишком маленьким, чтобы строить его из отдельных клеток.
Наша современная техногенная цивилизация использует точно такой же принцип при конструировании автомобилей. Небольшие автомобили у нас имеют несущий кузов, то есть внешний скелет и являются аналогами насекомых. Но по мере увеличения размеров несущий кузов, который бы выдерживал необходимые нагрузки, становится слишком тяжёлым, и мы переходим к использованию конструкции с прочной рамой, находящейся внутри, к которой крепятся все остальные элементы, то есть к схеме с внутренним прочным скелетом. Все средние и крупные грузовые автомобили и автобусы строятся именно по такой схеме. Но поскольку мы используем другие материалы и решаем другие задачи, чем Природа, предельные размеры перехода от схемы с внешним скелетом к схеме с внутренним скелетом в случае с автомобилями у нас также другие.
Если мы заглянем в океан, то там картина несколько иная. Вода имеет намного большую плотность, чем атмосфера земли, а значит оказывает и большее давление. Поэтому максимальные предельные размеры животных намного больше. Самое большое из ныне живущих на Земле морское животное, синий кит, вырастает в длину до 30 метров и может иметь вес более 180 тонн. Но этот вес практически полностью компенсируется давлением воды. Про «гидравлическую невесомость» знает любой, кто когда-либо плавал в воде.
Аналогом насекомых в океане, то есть животных с внешним скелетом, являются членистоногие, в частности крабы. Более плотная среда и дополнительное давление в данном случае также приводят к тому, что предельные размеры подобных животных намного больше, чем на суше. Длина тела японского краба-паука вместе с лапами может достигать 4 метров, при размерах панциря до 60-70 см. Да и многие другие членистоногие, живущие в воде, заметно крупнее сухопутных насекомых.
Я привёл эти примеры как наглядное подтверждение того факта, что физические параметры окружающей среды прямо влияют на предельные размеры живых организмов, а также на «границу перехода» от схемы с внешним скелетом к схеме с внутренним скелетом. Отсюда достаточно легко придти к выводу, что некоторое время назад физические параметры среды обитания на суше также были другими, поскольку мы имеем массу фактов говорящих о том, что на Земле существовали сухопутные животные гораздо больших размеров, чем сейчас.
Благодаря стараниям Голливуда сегодня сложно найти человека, который бы ничего не знал о динозаврах, гигантских рептилиях, останки которых в больших количествах находят по всей планете. Встречаются даже так называемые «кладбища динозавров», где в одном месте находят большое количество костей от множества животных разных видов, причём и травоядные, и хищники вместе. Внятного объяснения, почему особи совершенно разных видов и возраста пришли и умерли в данном конкретном месте, официальная наука никак не может придумать, хотя если проанализировать рельеф, то большинство известных «кладбищ динозавров» расположены в местах, куда животные просто были смыты каким-то мощным водным потоком с некоторой территории, то есть примерно так же, как сейчас образуются горы мусора в местах заторов на реках во время паводка, куда он смывается со всей подтопляемой территории.
Но сейчас нас больше интересует тот факт, что, судя по найденным костям, животные эти достигали огромных размеров. Среди известных на сегодняшний день динозавров имеются виды, вес которых превышал 100 тонн, высота превышала 20 метров (если мерить по вытянутой вверх шее), а общая длина тела составляла 34 метра.
http://animalreader.ru/samyj-tjazhelyj-dinozavr.html
http://dinosaurs.afly.ru/sravni/60-samiy-bolshoy-dinosavr
Проблема состоит в том, что подобные гигантские животные не могут существовать при современных физических параметрах окружающей среды. Биологические ткани имеют предел прочности и такая наука как «сопротивление материалов» говорит о том, что у подобных гигантов не будет хватать прочности сухожилий, мышц и костей, чтобы они могли нормально двигаться. Когда появились первые исследователи, которые указали на тот факт, что динозавр массой под 80 тонн просто не смог бы двигаться на суше, официальная наука достаточно быстро придумала объяснение, что большую часть времени подобные гиганты проводили в воде на «мелководье», высунув наружу лишь голову на длинной шее. Но это объяснение, увы, не годится ни для объяснения размеров гигантских летающих ящеров, которые при их размерах имели массу не позволяющую им нормально летать. И вот уже этих ящеров объявляют «полулетающими», то есть, летали они плохо, иногда, в основном прыгая и планируя с обрывов или деревьев.
Но ровно та же проблема у нас возникает и с древними насекомыми, размер которых также заметно больше, чем мы наблюдаем сейчас. Размах крыльев древней стрекозы Meganeuropsis permiana доходил до 1 метра, при этом образ жизни стрекозы плохо сочетается с простым планированием и прыганием с обрывов или деревьев для старта.
Африканские слоны это тот предельный размер сухопутных животных, который возможен при сегодняшних параметрах физической среды на планете. А для существования динозавров эти параметры необходимо изменить, в первую очередь повысить давление атмосферы и, скорее всего, изменить её состав.
Чтобы было более понятно, как это работает, приведу простой пример.
Если мы возьмём детский воздушный шарик, то надуть его можно только до определённого предела, после чего резиновая оболочка разорвётся. Если вы просто надуете воздушный шарик, не доведя его до разрыва, а потом поместите его в камеру, в которой начнёте понижать давление, откачивая воздух, то через некоторое время шарик тоже лопнет, поскольку внутренне давление перестанет компенсироваться внешним. Если же вы начнёте повышать давление в камере, то ваш шарик начнёт «сдуваться», то есть уменьшаться в размерах, поскольку повышенное давление воздуха внутри шарика начнёт компенсироваться внешним повышающимся давлением и упругость резиновой оболочки начнёт восстанавливать её форму, при этом разорвать её становится сложнее.
Примерно тоже самое происходит и с костями. Если вы возьмёте мягкую проволоку, например медную, то она достаточно легко гнётся. Если ту же тонкую проволоку поместить в некую упругую среду, например в поролон, то не смотря на относительную мягкость всей конструкции, жёсткость её в целом оказывается выше, чем у обоих компонентов по отдельности. Если же взять более плотный материал или сжать взятый в первом случае поролон, чтобы увеличить его плотность, то жёсткость всей конструкции станет ещё выше.
Другими словами, повышение атмосферного давления приводит также к повышению прочности и плотности биологических тканей.
Когда я уже работал над этой статьёй, на портале «Крамола» появилась замечательная статья Алексея Артемьева из Ижевска «Атмосферное давление и соль — свидетельства катастрофы» http://www.kramola.info/vesti/letopisi-proshlogo/atmosfernoe-davlenie-i-sol-svidetelstva-katastrofy В ней автор в очень доходчивой форме объясняет про существующие проблемы с солью в биосфере и происходящих в организмах биохимических процессах. В том числе объясняется понятие осмотического давления в живых клетках. При этом автор упоминает о том, что осмотическое давление плазмы крови составляет 7.6 атм, что косвенно указывает на тот факт, что атмосферное давление должно быть выше. Солёность крови обеспечивает дополнительное давление, которое компенсирует давление внутри клеток. Если мы повышаем давление атмосферы, то солёность крови может быть понижена, без риска разрушения оболочек клеток. Соответствующий пример опыта с эритроцитами Алексей подробно описывает в своей статье.
Теперь о том, чего в статье нет. Величина осмотического давления зависит от солёности крови, чтобы его повысить необходимо повысить содержание соли в крови. Но делать бесконечно этого нельзя, поскольку дальнейшее повышение содержания соли в крови начинает уже приводить к нарушению функционирования организма, который и так работает на пределе возможностей. Именно поэтому появляется масса статей о вреде соли, о необходимости отказаться от солёной пищи и т. д. Другими словами, наблюдаемый сегодня уровень солёности крови, который обеспечивает осмотическое давление в 7.6 атм, является неким компромиссным вариантом, при котором внутреннее давление клеток частично скомпенсировано, и в тоже время жизненно важные биохимические процессы ещё могут протекать.
А поскольку внутреннее и внешнее давление не полностью скомпенсированы, то это означает, что оболочки клеток находятся в напряжённом «натянутом» состоянии, напоминая собой надутые воздушные шарики. В свою очередь это понижает как общую прочность оболочек клеток, а значит и состоящей из них биологической ткани, так и их способность к дальнейшему растяжению, то есть общую эластичность.
Повышение давления атмосферы позволяет не только понизить солёность крови, но и дополнительно увеличивает прочность и эластичность биологических тканей за счёт снятия лишней нагрузки на внешние оболочки клеток. Что это даёт на практике? Например, дополнительная эластичность тканей снимает проблемы у всех живородящих организмов, поскольку родовые пути легче открываются и меньше повреждаются. Не по этой ли причине в Ветхом Завете, когда «Господь» изгоняет людей из Рая, он в качестве наказания объявляет Еве «Мучительной Я сделаю беременность твою, в муках будешь рожать детей.» (Бытие 3:16). После планетарной катастрофы (изгнание из Рая), устроенной «Господом» (захватчиками Земли), давление атмосферы упало, эластичность и прочность биологических тканей уменьшилась и из-за этого процесс родов стал болезненным, часто сопровождаемый разрывами и травмами.
Давайте посмотрим, что нам её даёт повышение атмосферного давления на планете. Лучше или хуже становится среда обитания с точки зрения живых организмов.
Мы уже выяснили, что повышение давления приведёт к повышению эластичности и прочности биологических тканей, а также к уменьшению потребления соли, что является несомненным плюсом для всех живых организмов.
Более высокое давление атмосферы повышает её теплопроводность и теплоёмкость, что должно сказаться на климате в лучшую сторону, поскольку атмосфера будет удерживать больше тепла, а также будет более равномерно его перераспределять. Для биосферы это тоже плюс.
Повышение плотности атмосферы приводит к тому, что становится проще летать. Повышение давления в 4 раза уже позволяет крылатым ящерам свободно летать, без необходимости прыгать с обрывов или высоких деревьев. Но тут есть и отрицательный момент. Более плотная атмосфера оказывает большее сопротивление при движении, особенно при быстром движении. Поэтому для быстрого движения необходимо будет иметь обтекаемую аэродинамическую форму. Но если мы посмотрим на животных, то оказывается, что у подавляющего большинства из них с обтекаемостью тела всё в полном порядке. Я полагаю, что более плотная атмосфера, в которой формировалась форма организмов их предков, внесла заметный вклад в то, что тела эти стали хорошо обтекаемыми.
Кстати, более высокое давление воздуха делает намного более выгодным воздухоплавание, то есть использование аппаратов легче воздуха. Причём всех видов, как основанных на использовании газов легче воздуха, так и основанных на нагревании воздуха. А если вы можете летать, то вам нет смысла строить дороги и мосты. Возможно, что именно этим фактом объясняется отсутствие капитальных древних дорог на территории Сибири, а также многочисленные упоминания «летучих кораблей» в народном фольклоре жителей самых разных стран.
Ещё один интересный эффект, который получается от увеличения плотности атмосферы. При сегодняшнем давлении скорость свободного падения тела человека составляет около 140 км/час. При столкновении с твёрдой поверхностью Земли на такой скорости человек погибает, поскольку тело получает серьёзные повреждения. Но сопротивление воздуха прямо пропорционально давлению атмосферы, поэтому если мы повышаем давление в 8 раз, то при прочих равных условиях скорость свободного падения также уменьшается в 8 раз. Вместо 140 км/час вы падаете со скоростью 17,5 км/час. Столкновение с поверхностью Земли на такой скорости тоже не приятно, но уже не смертельно.
Более высокое давление означает большую плотность воздуха, то есть большее количество атомов газа в том же объёме. В свою очередь это означает ускорение газообменных процессов, которые идут у всех животных и растений. На этом моменте необходимо остановится подробнее, поскольку мнение официальной науки по поводу влияния повышенного давления воздуха на живые организмы весьма противоречиво.
С одной стороны считается, что повышенное давление вредно влияет на все живые организмы. Тот факт, что более высокое давление атмосферы улучшает всасывание газов в кровь признаётся, но считается, что это весьма вредно для живых организмов. При повышении давления в 2-3 раза из-за более интенсивного всасывания азота в кровь через некоторое время, обычно через 2-4 часа, начинаются нарушения работы нервной системы и даже возникает явление, называемое «азотный наркоз», то есть потеря сознания. Лучше всасывается в кровь и кислород, что приводит к так называемому «кислородному отравлению». По этой причине для глубоководных погружений используют специальные газовые смеси, в которых содержание кислорода понижается, а вместо азота добавляется инертный газ, обычно гелий. Например, специальная газовая смесь для глубоководных погружений Trimix 10/50 содержит всего 10% кислорода и 50% гелия. Снижение содержания азота за счёт добавления гелия позволяет увеличить время пребывания на глубине, поскольку снижает скорость возникновения «азотного наркоза».
Также интересно, что при обычном давлении атмосферы для нормального дыхания организму человека требуется, чтобы в воздухе было не менее 17% кислорода. Но если мы повышаем давление до 3 атмосфер (в 3 раза), то достаточно уже всего 6% кислорода, что также подтверждает факт лучшего всасывания газов из атмосферы при повышении давления.
Однако, несмотря на ряд положительных эффектов, которые фиксируются при повышении давления, в целом фиксируется ухудшение функционирования живых сухопутных организмов, из чего официальной наукой делается вывод, что жизнь при повышенном давлении атмосферы якобы невозможна.
Теперь разберём, что же здесь не так и каким образом нас вводят в заблуждение. Для всех этих экспериментов берут человека или какой-то другой живой организм, который родился, вырос и привык жить, то есть адаптировал протекание всех биологических процессов, при существующем давлении в 1 атмосферу. При проведении подобных экспериментов давление окружающей среды, в которую помещают данный организм, резко повышают в несколько раз и «неожиданно» обнаруживают, что подопытному организму от этого стало плохо или он даже умер. Но на самом деле это вполне ожидаемый результат. Так и должно быть с любым организмом, которому резко изменяют один из важных параметров окружающей среды, к которым он привык, к которым адаптированы его жизненные процессы. При этом никто не ставил опытов по постепенному изменению давления, чтобы у живого организма было время адаптироваться и перестроить свои внутренние процессы для жизни при повышенном давлении. При этом факт наступления «азотного наркоза» при повышении давления, то есть потери сознания, может быть следствием подобной попытки, когда организм принудительно входит в состояние глубокого сна, то бишь «наркоза», поскольку необходимо срочно корректировать внутренние процессы, а сделать это, согласно исследованиям Ивана Пигарёва организм может только во время сна, отключив сознание.
Также интересно каким образом официальная наука пытается объяснить наличие в древности гигантских насекомых. Они считают, что главной причиной этого был избыток кислорода в атмосфере. При этом очень интересно читать выводы этих «учёных». Они ставят эксперимент на личинках насекомых, помещая их в воду дополнительно насыщенную кислородом. При этом выясняют, что личинки эти в подобных условиях растут заметно быстрее и вырастают крупнее. А далее из этого делается просто сногсшибательный вывод! Оказывается происходит это потому, что кислород является ядом!!! И чтобы защититься от яда, личинки начинают его быстрее усваивать и благодаря этому лучше растут!!! Логика этих «учёных» просто потрясает.
Откуда берётся лишний кислород в атмосфере? Объяснения этого какие-то невнятные, типа было много болот, благодаря которым выделялось много дополнительного кислорода. Причём было его почти на 50% больше, чем сейчас. Каким образом большое количество болот должно было способствовать увеличению выделения кислорода не объясняется, но кислород может производиться только во время одного биологического процесса — фотосинтеза. А вот в болотах обычно идёт активный процесс гниения останков органики, которые туда попадают, который, наоборот, приводит к активному образованию и выделению углекислого газа в атмосферу. То есть, тут тоже не сходятся концы с концами.
Теперь посмотрим на те факты, которые изложены в статье с другой стороны.
Повышение усвоения кислорода на самом деле идёт на пользу живым организмам, особенно на этапе начального роста. Если бы кислород являлся ядом, то никакого ускоренного роста наблюдаться не должно. Когда мы пытаемся поместить взрослый организм в среду с повышенным содержанием кислорода, то может возникать эффект, который похож на отравление, что является следствием нарушения сложившихся биохимических процессов, адаптированных к среде с пониженным содержанием кислорода. Если человек долго голодает, а потом ему дают много еды, то ему тоже станет плохо, наступит отравление, которое может даже вызвать смерть, поскольку его организм отвык от нормальной пищи, в том числе от необходимости выводить продукты распада, возникающие при переваривании пищи. Чтобы этого не происходило людей из длительной голодовки выводят постепенно.
Повышение давления атмосферы даёт эффект, который похож на увеличение содержания кислорода при обычном давлении. То есть, не требуется никаких гипотетических болот, которые почему-то вместо углекислого газа начинают выделять дополнительный кислород. Процентное содержание кислорода то же самое, но за счёт повышенного давление растворяется он в жидкостях лучше, причём как в крови животных, так и в воде, то есть, мы получаем условия эксперимента с личинками насекомых, о которых рассказано выше.
Сложно сказать, каким было изначально давление атмосферы и каков был её газовый состав. Экспериментально мы это сейчас выяснить не можем. Была информация о том, что при исследовании воздушных пузырьков, которые застыли в кусочках янтаря, было установлено, что давление газа в них составляет 9-10 атмосфер, но тут есть некоторые вопросы:
«В 1988 г. исследуя доисторическую атмосферу воздуха законсервированную в кусочках янтаря с возрастом около 80 мл. лет американские геологи Г. Ландис и Р. Бернер установили, что в меловый период атмосфера существенно отличалась не только по составу газов, но и по плотности. Давление было тогда в 10 раз выше. Именно «густой» воздух и позволял летать ящерам с размахом крыльев около 10 м., сделали вывод учёные.
В научной корректности Г. Ландиса и Р. Бернера всё же придётся усомниться. Конечно, замерить давление воздуха в пузырьках янтаря сложнейшая техническая задача и они с нею справились. Но ведь надо учесть, что янтарь, как всякая органическая смола, за столь длительный период усыхал; за счёт потери летучих веществ он делался плотнее и,- естественно, сдавливал находящийся в нём воздух. Отсюда и повышенное давление.»
Другими словами, данный метод не позволяет с точностью утверждать, что давление атмосферы было именно в 10 раз больше, чем сейчас. Он оно было больше современного, поскольку «усыхание» янтаря составляет не более 20% от первоначального объёма, то есть за счёт этого процесса давление воздуха в пузырьках не могло увеличиться в 10 раз. Также вызывает большие сомнения то, что янтарь может храниться в течение миллионов лет, поскольку это органическое соединение, которое достаточно хрупко и уязвимо. Подробнее об этом можно почитать в статье «Ухаживаем за янтарем» http://www.runako.ru/uhod.htm. Перепадов температур боится, механического воздействия боится, прямых лучей Солнца боится, на воздухе окисляется, прекрасно горит. И нас при этом уверяют, что данный «минерал» мог пролежать в Земле миллионы лет и при этом прекрасно сохраниться?
Более вероятна величина в районе 6-8 атмосфер, что хорошо согласуется и с осмотическим давлением внутри организма, и с повышением давления при усыхании кусочков янтаря. И тут мы подходим к ещё одному интересному моменту.
Во-первых, нам не известны природные процессы, которые могли бы привести к уменьшению давления атмосферы Земли. Земля может потерять часть атмосферы либо в случае столкновения с достаточно крупным небесным телом, когда часть атмосферы просто улетает в космос по инерции, либо в результате массированной бомбардировки поверхности Земли атомными бомбами или крупными метеоритами, когда в результате выделения большого количества тепла в момент взрыва часть атмосферы также выбрасывается в околоземное космическое пространство.
Во-вторых, изменение давление не могло понизиться сразу с 6-8 атмосфер до современной одной, то есть уменьшиться в 6-8 раз. Живые организмы просто не смогли бы адаптироваться к такому резкому изменению параметров окружающей среды. Эксперименты показывают, что изменение давления не более чем в два раза не убивает живые организмы, хотя и оказывает на них заметное негативное воздействие. Это означает, что подобных планетарных катастроф должно было произойти несколько, после каждой из которых давление должно было понижаться в 1.5 — 2 раза. Для того, чтобы давление понизилось с 8 атмосфер до современной 1 атмосферы, уменьшаясь каждый раз в 1.5 раза, необходимо 5 катастроф. При этом если мы будем идти от современной величины в 1 атмосферу, повышая каждый раз значение в 1.5 раза, то мы получим следующ
Врачи рассказали, как пережить высокое атмосферное давление – Москва 24, 07.08.2020
В пятницу, 7 августа, синоптики пообещали москвичам теплую погоду без осадков: столбики термометров покажут вплоть до +25 градусов. Однако атмосферное давление будет значительно выше нормы. Разбираемся, на ком могут отразиться подобные перепады и как их легко перенести.
Выше нормы
Фото: depositphotos/mike_laptev
Ведущий сотрудник центра погоды «Фобос» Александр Синенков рассказал, что жителей столицы в последний день рабочей недели ожидает теплая погода без осадков, однако атмосферное давление будет значительно выше нормы – 755 миллиметров ртутного столба.
«Сегодня мы ожидаем переменную облачность, без осадков. Максимальная температура в Москве 23–25, по области – от 21 до плюс 26», – сказал Синенков.
Кроме того, по словам синоптика, в столице северный ветер будет дуть со скоростью 3–8 метров в секунду.
О повышенном атмосферном давлении до рекордных значений в пятницу заявили и другие специалисты.
из сообщения Метеоновостей
При этом уже на следующей неделе в Москву придет похолодание. Такой прогноз дал научный руководитель Гидрометцентра России Роман Вильфанд. По словам метеоролога, температура начнет падать с понедельника: тогда воздух прогреется до 19–23 градусов.
«Во вторник будет аналогичная ситуация. Это около и чуть ниже нормы – примерно на 1 градус», – сказал он.
Вильфанд добавил, что в середине следующей недели может похолодать еще сильнее.
О подобных температурных перепадах специалист предупреждал еще в конце июля. Тогда метеоролог заявил, что погода в августе будет «нервной». Значительные температурные перепады ожидаются на всей территории России, однако в ее европейской части показатели приблизятся к норме.
Без экстремальных нагрузок и трудовых подвигов
Фото: портал мэра и правительства Москвы/Юлия Иванко
Любые перепады давления, изменения метеоусловий в первую очередь сказываются на людях с заболеваниями сердечно-сосудистой, нервной систем и хроническими заболеваниями. Об этом в беседе с Москвой 24 заявила врач-терапевт Альбина Стрельченко.
«Соответственно, те же хроники, гипертоники или же люди с инсультом в истории болезни, с атеросклерозом сосудов головного мозга, они более подвержены каким-то ухудшениям состояний при изменении метеоусловий», – пояснила эксперт.
Чтобы избежать неприятностей в такие дни, следует больше отдыхать, правильно питаться и не забывать про терапию, уверена Стрельченко.
Альбина Стрельченко
врач-терапевт
Кроме того, важно не забывать про прием препаратов, если такие были назначены врачом. «Иногда человек себя хорошо чувствует, давление ничего. Поэтому он забрасывает принимать свои таблетки, потому что ничего не болит, все нормально. Соответственно, таблетки лучше принимать, держать под рукой, чтобы в случае ухудшения самочувствия они были рядом», – уточнила Стрельченко.
В свою очередь, заслуженный врач России Андрей Кабычкин рассказал Москве 24, что в период скачков атмосферного давления у зависимых от погоды людей, а также у тех, кто имеет сосудистые и сердечные заболевания, может повыситься частота сердечных сокращений, могут усилиться вегетативные реакции, возникнуть вялость, слабость или же нарушиться сон.
«Всего этого огромный букет. У всех происходит по-разному. Если человек об этом знает и сопереживает совместно с природой, то появляются и всякие психосоматические реакции: повышенная раздражительность, агрессивность и так далее», – добавил эксперт.
В такой период, по словам Кабычкина, лучше всего вести размеренный образ жизни: «Без экстремальных нагрузок и трудовых подвигов».
Врач также подчеркнул, что в случае серьезного ухудшения состояния лучше всего обратиться к специалистам, которые смогут быстро поставить диагноз и окажут необходимую помощь.
Читайте также
Соболева Илона
Атмосферное давление — что это? Какое 👀 атмосферное давление считается низким, а какое высоким?
Все мы и окружающие нас вещи испытывают атмосферное давление, создаваемое невидимым и почти не ощущаемым нами воздухом. Впервые его успешно померил физик Торричелли в 1634 году.
На 1 см2 действует атмосфера весом около 1 кг. Человек не ощущает этого, так как газы, всегда имеющиеся в крови и находящиеся в полостях тела, уравновешивают внешнее воздействие.
Как давит воздух на Землю
Нормальным средним современная физика считает давление, когда столбик атмосферы над 1 см2 площади весит 1,033 кг. Показатели были получены на нулевом уровне моря при 0⁰С, на широте 45⁰. Эта масса поднимает ртуть в трубке барометра вверх на 760 мм. Иногда показатель фиксируют в других физических единицах – Паскалях.
Для измерения величины используют барометры:
- Ртутные.
- Металлические (анероиды).
Основная деталь ртутного – это запаянная стеклянная трубка, которая открытым концом опущена в емкость с ртутью. Земной воздух давит на серебристую жидкость, та поднимается по трубочке, рядом с которой помещают миллиметровую шкалу.
На сколько миллиметров поднялся столбик, таким и будет значение, показывающее, как сильно атмосфера давит на площадь 1 см2.
Ртутный барометрАнероиды сделаны по другому принципу. По сути – это металлическая коробка, из которой откачали воздух. Атмосфера (она более плотная, чем содержимое коробки) давит на стенки, и они прогибаются. Через систему рычагов они соединяются со стрелкой, которая указывает на текущее значение.
Величина давления атмосферы колеблется вокруг нормальных значений и зависит от погоды. Минимум (641,3 мм рт.ст.) был зафиксирован внутри тайфуна «Нэнси», зародившегося в Тихом океане и обрушившегося на Японию в 1961 году.
Рекордно высоко поднялась ртуть в барометре (815,85 мм рт.ст.) однажды зимой в одном из городов Красноярского края в России. До этого рекордсменом считался Хубсубульский аймак в Монголии.
Почему оно не одинаковое
Атмосферное давление меняется и на это влияют:
- высота точки над уровнем моря;
- сезон;
- время суток;
- климатическая зона;
- изменения температуры.
Чем выше, тем ниже
Чем выше точка над уровнем моря, тем все более разреженным становится воздух, тем ниже становится давление атмосферы. В нижних слоях воздушной оболочки земли давление убывает каждые 11 метров на 1 мм рт.ст.
Например, на высоте 20 км оно составляет лишь 47 мм рт.ст. Поэтому при подъеме на такое расстояние от поверхности Земли у человека закипает кровь и межтканевые жидкости. Если не находиться в герметической кабине самолета или аэростата, то смерть наступит почти мгновенно.
Известно, что в разных населенных пунктах планеты норма давления атмосферы своя. Это логично, так как находиться они могут на разной высоте. Так, например, Челябинск построен на возвышении — 226 м от нулевой отметки уровня мирового океана. Нормальное атмосферное давление для него — это 739 мм рт.ст.
Расположение Кургана по отношению к поверхности мирового океана – 72 м, и типичные показания барометра, которые можно считать нормальными – 753 мм рт. ст.
Перепады температуры
Какое время года на дворе – это тоже влияет на показатель. Зимой он выше, так как зимний воздух холоднее и плотнее. Летом – ниже, потому что воздух теплее и разреженнее.
Та же температурная причина изменений уровня ртутного столбика в течение суток. Суточные колебания происходят в пределах 4 – 5 мм, а сезонные — не превышают 30 мм рт. ст. Все те же физические явления объясняют то, что в Арктике и Антарктиде постоянно высокое атмосферное давление, а на экваторе – низкое.
Циклон, вид из космосаНеравномерное прогревание воздуха — фактор, ответственный за формирование территорий с пониженным давлением, вокруг которых формируются циклоны. Снижение показаний барометра может указывать на возможность дождя.
Считается, что дождь, если ртуть ниже 760 мм. И если задуматься, какое атмосферное давление правомерно считать низким и, наоборот, высоким, то эта цифра и будет пограничным критерием.
Метеозависимые люди очень чувствительны к перепадам давления. Значение ниже 750 мм рт.ст. для многих из них связано с неприятными ощущениями.
Медики объясняют это тем, что при низких показаниях барометра давление газов внутри тела, в жидкостях и полостях, становится выше, чем снаружи. Это раздражает рецепторы в органах и человек может ощущать ломоту в суставах.
Кроме того, ощущается кислородное голодание, не редки случаи головокружений, сонливости, оглушенного состояния.
Давно вы имели по-настоящему КРУПНЫЙ УЛОВ?
Когда последний раз ловили десятки ЗДОРОВЕННЫХ щук/карпов/лещей?
Нам всегда хочется получать результат от рыбалки – поймать не три окунька, а десяток килограммовых щук – вот это будет улов! Каждый из нас мечтает о таком, но далеко не каждый умеет.
Хорошего улова можно достичь (и мы это с вами знаем) благодаря хорошей прикормке.
Ее можно приготовить в домашних условиях, можно купить в рыбацких магазинах. Но в магазинах дорого, а чтобы приготовить прикормку дома, нужно потратить уйму времени, да и, по праве говоря, далеко не всегда домашняя прикормка хорошо работает.
Вам знакомо то разочарование, когда вы купили прикормку или приготовили ее дома, а поймали три-четыре окунька?
Так может быть пора воспользоваться действительно рабочим продуктом, эффективность которого доказана как научно, так и практикой на реках и прудах России?
Fish Megabomb дает тот самый результат, который мы не можем достичь сами, тем более, стоит она дешево, что отличает от других средств и времени тратить на изготовление не нужно – заказал, привезли и вперед!Конечно, лучше один раз попробовать, чем тысячу раз услышать. Тем более сейчас – самый сезон! Скидка в 50% при заказе это отличный бонус!
Узнайте подробнее про приманку!
Колебания атмосферного давления и самочувствие
В эти дни на европейской территории России наблюдаются резкие перепады атмосферного давления.
В минувшие выходные дни при прохождении североатлантического циклона через Центр страны, атмосферное давление резко упало. А в начале текущей недели циклон заменил антициклон, атмосферное давление во вторник резко поднимется и продержится несколько дней повышенным. Во второй половине недели очередной североатлантический циклон пройдет по северу ЕТР. С ним опять ожидаются резкие взлеты и падения атмосферного давления.
При ощутимом изменении атмосферного давления, как в меньшую, так и в большую сторону, организм человека нередко ощущает ухудшение самочувствия. Вот некоторые общепринятые рекомендации интернет сайта для снижения негативных симптомов действия высокого либо низкого атмосферного давления на наш организм.
Антициклон Антициклоном называется повышение атмосферного давления, которое сопровождается безветренной ясной погодой с отсутствием резких изменений температуры или уровня влажности. Повышенное атмосферное давление очень негативно влияет на здоровье человека, особенно если он аллергик, астматик или страдает повышенным артериальным давлением. Такие люди достаточно остро реагируют на различные вредные примеси в воздухе, количество которых ощутимо возрастает в сухую безветренную погоду.
В организме человека антициклон проявляется головными и сердечными болями, снижением работоспособности, недомоганием и общей слабостью. Повышенное атмосферное давление негативно влияет на защитные функции организма путём уменьшения в крови количества лейкоцитов. Всё это существенно подрывает здоровье человека, делая его уязвимым к различным инфекционным заболеваниям.
Для того чтобы облегчить действие антициклона рекомендуется по утрам принимать контрастный бодрящий душ, проводить лёгкую гимнастику и ввести в свой ежедневный рацион больше фруктов, содержащих калий. Для снижения нагрузки на иммунную и нервную системы человека лучше на время отказаться от серьёзных и важных дел. По возможности необходимо больше отдыхать, чтобы быстрее восстановить силы, утраченные организмом в борьбе с негативным влиянием антициклона.
Циклон Циклоном называют снижение атмосферного давления, которое сопровождается обычно повышенной температурой, облачностью, влажностью и осадками. Наиболее подвержены действию циклона люди, страдающие низким артериальным давлением, нарушениями дыхательных функций, а также сердечнососудистыми проблемами. Основными проявлениями негативного влияния циклона на организм человека являются: затруднение дыхания, одышка, нехватка воздуха и общая слабость. Это обусловлено недостатком кислорода в окружающем воздухе. Нередко во время циклона у человека повышается внутричерепное давление, в результате чего начинается сильная мигрень. Кроме этого возможны сбои в работе желудка и кишечника, которые связаны с интенсивным газообразованием. С приходом циклона необходимо постоянно контролировать уровень своего кровяного давления. В этом вам поможет обильное питьё, контрастный душ, спокойный крепкий сон, а также утренняя чашечка кофе. Для поддержания общего здоровья в период пониженного атмосферного давления рекомендуется пить настойку из лимонника или женьшеня.
Правила снижения симптомов метеозависимости Атмосферное давление, а точнее его резкие перепады, чаще застают врасплох жителей мегаполисов. Полностью излечить эту форму метеозависимости практически невозможно, но соблюдая некоторые несложные правила, можно ощутимо облегчить состояние своего здоровья при сложных погодных условиях. В первую очередь необходимо строго следить за своим распорядком дня и по возможности раньше ложиться спать. При резких перепадах атмосферного давления сон должен длиться не менее 9 часов. Для полноценного ночного отдыха рекомендуется выпивать на ночь стакан ромашкового или мятного чая, а проснувшись – сделать лёгкий массаж голеней и стоп, а уж затем только подниматься с постели. Для того чтобы взбодриться следует проводить ежедневную короткую гимнастику, которая поможет обрести тонус вашим сосудам. Необходимо исключить из списка гимнастических упражнений наклоны и приседания, так как они требуют соблюдения равновесия. После зарядки рекомендуется принять контрастный душ, который положительно влияет на здоровье всех внутренних систем и органов человека.
Хорошо поддержать нервную систему поможет комплекс витаминов, который следует принимать при перепадах атмосферного давления. Кушать нужно часто, но небольшими порциями, и ни в коем случае не перегружать тяжёлой пищей организм. Во время многочасовой работы за компьютером необходимо периодически делать перерыв, во время которого можно провести короткую гимнастику, сменить позу, а также самостоятельно сделать массаж шейной и височной зон. Для того чтобы максимально безболезненно перенести все погодные сюрпризы старайтесь избегать сильных перенапряжений и стрессов. Также в это время не рекомендуется проводить силовые тренировки и ответственные мероприятия. При перепадах давления полезным будет посетить бассейн, где спокойная обстановка и целебное действие воды помогут забыть обо всех неурядицах.
Метеозависимым людям рекомендуется увеличить потребление воды и фруктовых соков. При перепадах артериального давления следует больше отдыхать в положении лёжа. Вернуть организму тонус при пониженном давлении поможет сладкий тёплый чай. Очень важно в эти сложные дни вовремя заметить тревожные признаки, которые могут свидетельствовать о серьёзных заболеваниях: — неприятные ощущения в груди, отдающие в плечо, лопатку или пупочную область; — внезапная утрата чувствительности в нижних и верхних конечностях; — чувство онемения половины лица; — затруднённая речь; — неожиданный приступ тошноты; — расфокусировка зрения или мелькание перед глазами мушек; — проблемы с дыханием.
Желаем Вам бодрости и хорошего самочувствия независимо от величины атмосферного давления!
Прекрасный мир, который мы потеряли. Часть 5 Каким было раньше атмосферное давление и жизнь: trinusss — LiveJournal
НачалоСегодня самым крупным сухопутным животным на Земле является африканский слон. Длина тела самца слона достигает 7.5 метров, высота более 3-х метров при весе до 6 тонн. При этом в день он потребляет от 280 до 340 кг. листьев, что весьма не мало. В Индии говорят, что если в деревне есть слон, то это значит, что она достаточно богата, чтобы его прокормить.
Самое маленькое наземное животное на Земле – это лягушка Paedophryne. Ее минимальная длина около 7,7 мм, а максимальная — не более 11,3 мм. Самой маленькой птицей, а к тому же ещё и самым маленьким теплокровным животным, считается птица колибри-пчёлка, живущая на Кубе, её размер всего 5 см.
Минимальные и максимальные размеры животных на нашей планете вовсе не случайны. Они определяются физическими параметрами среды на поверхности Земли, в первую очередь силой тяжести и давлением атмосферы. Сила тяжести пытается расплющить тело любого животного, превратив его в плоский блин, тем более, что организм животных на 60-80% состоит из воды. Биологические ткани, из которых состоит организм животных, пытаются в этом гравитации помешать, а атмосферное давление им в этом помогает. На поверхности Земли атмосфера давит с силой 1 кг на кв. см. поверхности, что является весьма ощутимым подспорьем в борьбе с силой притяжения Земли.
Интересно, что прочность материалов, из которых состоит организм животных, ограничивает не только максимальные размеры за счёт массы, но и минимальные размеры за счёт прочности костей скелета при уменьшении их толщины. Очень тонкие кости, которые расположены внутри маленького организма, просто не будут выдерживать возникающих нагрузок и сломаются или погнутся, не обеспечив необходимой жёсткости при выполнении движений. Поэтому, чтобы ещё уменьшить размеры организмов, необходимо изменить общую схему построения организма и перейти от внутреннего скелета к внешнему, то есть, вместо костей, покрытых мышцами и кожей, сделать внешний жёсткий панцирь, а все органы и мышцы разместить внутри. Проделав подобное преобразование мы получаем насекомых с их прочным внешним хитиновым покровом, который заменяет им скелет и даёт необходимую механическую жёсткость для обеспечения движения.
Но у подобной схемы построения живых организмов также есть свои ограничения на размер, в особенности при его увеличении, поскольку масса внешнего панциря будет расти очень быстро, в результате чего само животное будет становиться слишком тяжёлым и неповоротливым. При увеличении линейных размеров организма в три раза, площадь поверхности, которая имеет квадратичную зависимость от размеров, увеличится в 9 раз. А поскольку масса зависит от объёма вещества, который имеет кубическую зависимость от линейных размеров, то и объём, и масса увеличатся в 27 раз. При этом чтобы внешний хитиновый панцирь не разрушался при увеличении массы тела насекомого, его придётся делать всё толще, что ещё больше увеличит его вес. Поэтому предельные размеры насекомых сегодня составляют 20-30 см, при этом средний размер насекомых находится в районе 5-7 см, то есть граничит с минимальным размером позвоночных.
Самым крупным насекомым сегодня считается паук-птицеед «Терафоза Блонда», самый крупный из пойманных экземпляров которого имел размер 28 см.
Минимальный размер насекомых меньше миллиметра, самая маленькая оса из семейства мирамид имеет размер тела всего 0.12 мм, но там уже начинаются проблемы с построением многоклеточного организма, поскольку этот организм становится слишком маленьким, чтобы строить его из отдельных клеток.
Наша современная техногенная цивилизация использует точно такой же принцип при конструировании автомобилей. Небольшие автомобили у нас имеют несущий кузов, то есть внешний скелет и являются аналогами насекомых. Но по мере увеличения размеров несущий кузов, который бы выдерживал необходимые нагрузки, становится слишком тяжёлым, и мы переходим к использованию конструкции с прочной рамой, находящейся внутри, к которой крепятся все остальные элементы, то есть к схеме с внутренним прочным скелетом. Все средние и крупные грузовые автомобили и автобусы строятся именно по такой схеме. Но поскольку мы используем другие материалы и решаем другие задачи, чем Природа, предельные размеры перехода от схемы с внешним скелетом к схеме с внутренним скелетом в случае с автомобилями у нас также другие.
Если мы заглянем в океан, то там картина несколько иная. Вода имеет намного большую плотность, чем атмосфера земли, а значит оказывает и большее давление. Поэтому максимальные предельные размеры животных намного больше. Самое большое из ныне живущих на Земле морское животное, синий кит, вырастает в длину до 30 метров и может иметь вес более 180 тонн. Но этот вес практически полностью компенсируется давлением воды. Про «гидравлическую невесомость» знает любой, кто когда-либо плавал в воде.
Аналогом насекомых в океане, то есть животных с внешним скелетом, являются членистоногие, в частности крабы. Более плотная среда и дополнительное давление в данном случае также приводят к тому, что предельные размеры подобных животных намного больше, чем на суше. Длина тела японского краба-паука вместе с лапами может достигать 4 метров, при размерах панциря до 60-70 см. Да и многие другие членистоногие, живущие в воде, заметно крупнее сухопутных насекомых.
Я привёл эти примеры как наглядное подтверждение того факта, что физические параметры окружающей среды прямо влияют на предельные размеры живых организмов, а также на «границу перехода» от схемы с внешним скелетом к схеме с внутренним скелетом. Отсюда достаточно легко придти к выводу, что некоторое время назад физические параметры среды обитания на суше также были другими, поскольку мы имеем массу фактов говорящих о том, что на Земле существовали сухопутные животные гораздо больших размеров, чем сейчас.
Благодаря стараниям Голливуда сегодня сложно найти человека, который бы ничего не знал о динозаврах, гигантских рептилиях, останки которых в больших количествах находят по всей планете. Встречаются даже так называемые «кладбища динозавров», где в одном месте находят большое количество костей от множества животных разных видов, причём и травоядные, и хищники вместе. Внятного объяснения, почему особи совершенно разных видов и возраста пришли и умерли в данном конкретном месте, официальная наука никак не может придумать, хотя если проанализировать рельеф, то большинство известных «кладбищ динозавров» расположены в местах, куда животные просто были смыты каким-то мощным водным потоком с некоторой территории, то есть примерно так же, как сейчас образуются горы мусора в местах заторов на реках во время паводка, куда он смывается со всей подтопляемой территории.
Но сейчас нас больше интересует тот факт, что, судя по найденным костям, животные эти достигали огромных размеров. Среди известных на сегодняшний день динозавров имеются виды, вес которых превышал 100 тонн, высота превышала 20 метров (если мерить по вытянутой вверх шее), а общая длина тела составляла 34 метра.
http://animalreader.ru/samyj-tjazhelyj-dinozavr.html
http://dinosaurs.afly.ru/sravni/60-samiy-bolshoy-dinosavr
Проблема состоит в том, что подобные гигантские животные не могут существовать при современных физических параметрах окружающей среды. Биологические ткани имеют предел прочности и такая наука как «сопротивление материалов» говорит о том, что у подобных гигантов не будет хватать прочности сухожилий, мышц и костей, чтобы они могли нормально двигаться. Когда появились первые исследователи, которые указали на тот факт, что динозавр массой под 80 тонн просто не смог бы двигаться на суше, официальная наука достаточно быстро придумала объяснение, что большую часть времени подобные гиганты проводили в воде на «мелководье», высунув наружу лишь голову на длинной шее. Но это объяснение, увы, не годится ни для объяснения размеров гигантских летающих ящеров, которые при их размерах имели массу не позволяющую им нормально летать. И вот уже этих ящеров объявляют «полулетающими», то есть, летали они плохо, иногда, в основном прыгая и планируя с обрывов или деревьев.
Но ровно та же проблема у нас возникает и с древними насекомыми, размер которых также заметно больше, чем мы наблюдаем сейчас. Размах крыльев древней стрекозы Meganeuropsis permiana доходил до 1 метра, при этом образ жизни стрекозы плохо сочетается с простым планированием и прыганием с обрывов или деревьев для старта.
Африканские слоны это тот предельный размер сухопутных животных, который возможен при сегодняшних параметрах физической среды на планете. А для существования динозавров эти параметры необходимо изменить, в первую очередь повысить давление атмосферы и, скорее всего, изменить её состав.
Чтобы было более понятно, как это работает, приведу простой пример.
Если мы возьмём детский воздушный шарик, то надуть его можно только до определённого предела, после чего резиновая оболочка разорвётся. Если вы просто надуете воздушный шарик, не доведя его до разрыва, а потом поместите его в камеру, в которой начнёте понижать давление, откачивая воздух, то через некоторое время шарик тоже лопнет, поскольку внутренне давление перестанет компенсироваться внешним. Если же вы начнёте повышать давление в камере, то ваш шарик начнёт «сдуваться», то есть уменьшаться в размерах, поскольку повышенное давление воздуха внутри шарика начнёт компенсироваться внешним повышающимся давлением и упругость резиновой оболочки начнёт восстанавливать её форму, при этом разорвать её становится сложнее.
Примерно тоже самое происходит и с костями. Если вы возьмёте мягкую проволоку, например медную, то она достаточно легко гнётся. Если ту же тонкую проволоку поместить в некую упругую среду, например в поролон, то не смотря на относительную мягкость всей конструкции, жёсткость её в целом оказывается выше, чем у обоих компонентов по отдельности. Если же взять более плотный материал или сжать взятый в первом случае поролон, чтобы увеличить его плотность, то жёсткость всей конструкции станет ещё выше.
Другими словами, повышение атмосферного давления приводит также к повышению прочности и плотности биологических тканей.
Когда я уже работал над этой статьёй, на портале «Крамола» появилась замечательная статья Алексея Артемьева из Ижевска «Атмосферное давление и соль — свидетельства катастрофы» http://www.kramola.info/vesti/letopisi-proshlogo/atmosfernoe-davlenie-i-sol-svidetelstva-katastrofy В ней автор в очень доходчивой форме объясняет про существующие проблемы с солью в биосфере и происходящих в организмах биохимических процессах. В том числе объясняется понятие осмотического давления в живых клетках. При этом автор упоминает о том, что осмотическое давление плазмы крови составляет 7.6 атм, что косвенно указывает на тот факт, что атмосферное давление должно быть выше. Солёность крови обеспечивает дополнительное давление, которое компенсирует давление внутри клеток. Если мы повышаем давление атмосферы, то солёность крови может быть понижена, без риска разрушения оболочек клеток. Соответствующий пример опыта с эритроцитами Алексей подробно описывает в своей статье.
Теперь о том, чего в статье нет. Величина осмотического давления зависит от солёности крови, чтобы его повысить необходимо повысить содержание соли в крови. Но делать бесконечно этого нельзя, поскольку дальнейшее повышение содержания соли в крови начинает уже приводить к нарушению функционирования организма, который и так работает на пределе возможностей. Именно поэтому появляется масса статей о вреде соли, о необходимости отказаться от солёной пищи и т. д. Другими словами, наблюдаемый сегодня уровень солёности крови, который обеспечивает осмотическое давление в 7.6 атм, является неким компромиссным вариантом, при котором внутреннее давление клеток частично скомпенсировано, и в тоже время жизненно важные биохимические процессы ещё могут протекать.
А поскольку внутреннее и внешнее давление не полностью скомпенсированы, то это означает, что оболочки клеток находятся в напряжённом «натянутом» состоянии, напоминая собой надутые воздушные шарики. В свою очередь это понижает как общую прочность оболочек клеток, а значит и состоящей из них биологической ткани, так и их способность к дальнейшему растяжению, то есть общую эластичность.
Повышение давления атмосферы позволяет не только понизить солёность крови, но и дополнительно увеличивает прочность и эластичность биологических тканей за счёт снятия лишней нагрузки на внешние оболочки клеток. Что это даёт на практике? Например, дополнительная эластичность тканей снимает проблемы у всех живородящих организмов, поскольку родовые пути легче открываются и меньше повреждаются. Не по этой ли причине в Ветхом Завете, когда «Господь» изгоняет людей из Рая, он в качестве наказания объявляет Еве «Мучительной Я сделаю беременность твою, в муках будешь рожать детей.» (Бытие 3:16). После планетарной катастрофы (изгнание из Рая), устроенной «Господом» (захватчиками Земли), давление атмосферы упало, эластичность и прочность биологических тканей уменьшилась и из-за этого процесс родов стал болезненным, часто сопровождаемый разрывами и травмами.
Давайте посмотрим, что нам её даёт повышение атмосферного давления на планете. Лучше или хуже становится среда обитания с точки зрения живых организмов.
Мы уже выяснили, что повышение давления приведёт к повышению эластичности и прочности биологических тканей, а также к уменьшению потребления соли, что является несомненным плюсом для всех живых организмов.
Более высокое давление атмосферы повышает её теплопроводность и теплоёмкость, что должно сказаться на климате в лучшую сторону, поскольку атмосфера будет удерживать больше тепла, а также будет более равномерно его перераспределять. Для биосферы это тоже плюс.
Повышение плотности атмосферы приводит к тому, что становится проще летать. Повышение давления в 4 раза уже позволяет крылатым ящерам свободно летать, без необходимости прыгать с обрывов или высоких деревьев. Но тут есть и отрицательный момент. Более плотная атмосфера оказывает большее сопротивление при движении, особенно при быстром движении. Поэтому для быстрого движения необходимо будет иметь обтекаемую аэродинамическую форму. Но если мы посмотрим на животных, то оказывается, что у подавляющего большинства из них с обтекаемостью тела всё в полном порядке. Я полагаю, что более плотная атмосфера, в которой формировалась форма организмов их предков, внесла заметный вклад в то, что тела эти стали хорошо обтекаемыми.
Кстати, более высокое давление воздуха делает намного более выгодным воздухоплавание, то есть использование аппаратов легче воздуха. Причём всех видов, как основанных на использовании газов легче воздуха, так и основанных на нагревании воздуха. А если вы можете летать, то вам нет смысла строить дороги и мосты. Возможно, что именно этим фактом объясняется отсутствие капитальных древних дорог на территории Сибири, а также многочисленные упоминания «летучих кораблей» в народном фольклоре жителей самых разных стран.
Ещё один интересный эффект, который получается от увеличения плотности атмосферы. При сегодняшнем давлении скорость свободного падения тела человека составляет около 140 км/час. При столкновении с твёрдой поверхностью Земли на такой скорости человек погибает, поскольку тело получает серьёзные повреждения. Но сопротивление воздуха прямо пропорционально давлению атмосферы, поэтому если мы повышаем давление в 8 раз, то при прочих равных условиях скорость свободного падения также уменьшается в 8 раз. Вместо 140 км/час вы падаете со скоростью 17,5 км/час. Столкновение с поверхностью Земли на такой скорости тоже не приятно, но уже не смертельно.
Более высокое давление означает большую плотность воздуха, то есть большее количество атомов газа в том же объёме. В свою очередь это означает ускорение газообменных процессов, которые идут у всех животных и растений. На этом моменте необходимо остановится подробнее, поскольку мнение официальной науки по поводу влияния повышенного давления воздуха на живые организмы весьма противоречиво.
С одной стороны считается, что повышенное давление вредно влияет на все живые организмы. Тот факт, что более высокое давление атмосферы улучшает всасывание газов в кровь признаётся, но считается, что это весьма вредно для живых организмов. При повышении давления в 2-3 раза из-за более интенсивного всасывания азота в кровь через некоторое время, обычно через 2-4 часа, начинаются нарушения работы нервной системы и даже возникает явление, называемое «азотный наркоз», то есть потеря сознания. Лучше всасывается в кровь и кислород, что приводит к так называемому «кислородному отравлению». По этой причине для глубоководных погружений используют специальные газовые смеси, в которых содержание кислорода понижается, а вместо азота добавляется инертный газ, обычно гелий. Например, специальная газовая смесь для глубоководных погружений Trimix 10/50 содержит всего 10% кислорода и 50% гелия. Снижение содержания азота за счёт добавления гелия позволяет увеличить время пребывания на глубине, поскольку снижает скорость возникновения «азотного наркоза».
Также интересно, что при обычном давлении атмосферы для нормального дыхания организму человека требуется, чтобы в воздухе было не менее 17% кислорода. Но если мы повышаем давление до 3 атмосфер (в 3 раза), то достаточно уже всего 6% кислорода, что также подтверждает факт лучшего всасывания газов из атмосферы при повышении давления.
Однако, несмотря на ряд положительных эффектов, которые фиксируются при повышении давления, в целом фиксируется ухудшение функционирования живых сухопутных организмов, из чего официальной наукой делается вывод, что жизнь при повышенном давлении атмосферы якобы невозможна.
Теперь разберём, что же здесь не так и каким образом нас вводят в заблуждение. Для всех этих экспериментов берут человека или какой-то другой живой организм, который родился, вырос и привык жить, то есть адаптировал протекание всех биологических процессов, при существующем давлении в 1 атмосферу. При проведении подобных экспериментов давление окружающей среды, в которую помещают данный организм, резко повышают в несколько раз и «неожиданно» обнаруживают, что подопытному организму от этого стало плохо или он даже умер. Но на самом деле это вполне ожидаемый результат. Так и должно быть с любым организмом, которому резко изменяют один из важных параметров окружающей среды, к которым он привык, к которым адаптированы его жизненные процессы. При этом никто не ставил опытов по постепенному изменению давления, чтобы у живого организма было время адаптироваться и перестроить свои внутренние процессы для жизни при повышенном давлении. При этом факт наступления «азотного наркоза» при повышении давления, то есть потери сознания, может быть следствием подобной попытки, когда организм принудительно входит в состояние глубокого сна, то бишь «наркоза», поскольку необходимо срочно корректировать внутренние процессы, а сделать это, согласно исследованиям Ивана Пигарёва организм может только во время сна, отключив сознание.
Также интересно каким образом официальная наука пытается объяснить наличие в древности гигантских насекомых. Они считают, что главной причиной этого был избыток кислорода в атмосфере. При этом очень интересно читать выводы этих «учёных». Они ставят эксперимент на личинках насекомых, помещая их в воду дополнительно насыщенную кислородом. При этом выясняют, что личинки эти в подобных условиях растут заметно быстрее и вырастают крупнее. А далее из этого делается просто сногсшибательный вывод! Оказывается происходит это потому, что кислород является ядом!!! И чтобы защититься от яда, личинки начинают его быстрее усваивать и благодаря этому лучше растут!!! Логика этих «учёных» просто потрясает.
Откуда берётся лишний кислород в атмосфере? Объяснения этого какие-то невнятные, типа было много болот, благодаря которым выделялось много дополнительного кислорода. Причём было его почти на 50% больше, чем сейчас. Каким образом большое количество болот должно было способствовать увеличению выделения кислорода не объясняется, но кислород может производиться только во время одного биологического процесса — фотосинтеза. А вот в болотах обычно идёт активный процесс гниения останков органики, которые туда попадают, который, наоборот, приводит к активному образованию и выделению углекислого газа в атмосферу. То есть, тут тоже не сходятся концы с концами.
Теперь посмотрим на те факты, которые изложены в статье с другой стороны.
Повышение усвоения кислорода на самом деле идёт на пользу живым организмам, особенно на этапе начального роста. Если бы кислород являлся ядом, то никакого ускоренного роста наблюдаться не должно. Когда мы пытаемся поместить взрослый организм в среду с повышенным содержанием кислорода, то может возникать эффект, который похож на отравление, что является следствием нарушения сложившихся биохимических процессов, адаптированных к среде с пониженным содержанием кислорода. Если человек долго голодает, а потом ему дают много еды, то ему тоже станет плохо, наступит отравление, которое может даже вызвать смерть, поскольку его организм отвык от нормальной пищи, в том числе от необходимости выводить продукты распада, возникающие при переваривании пищи. Чтобы этого не происходило людей из длительной голодовки выводят постепенно.
Повышение давления атмосферы даёт эффект, который похож на увеличение содержания кислорода при обычном давлении. То есть, не требуется никаких гипотетических болот, которые почему-то вместо углекислого газа начинают выделять дополнительный кислород. Процентное содержание кислорода то же самое, но за счёт повышенного давление растворяется он в жидкостях лучше, причём как в крови животных, так и в воде, то есть, мы получаем условия эксперимента с личинками насекомых, о которых рассказано выше.
Сложно сказать, каким было изначально давление атмосферы и каков был её газовый состав. Экспериментально мы это сейчас выяснить не можем. Была информация о том, что при исследовании воздушных пузырьков, которые застыли в кусочках янтаря, было установлено, что давление газа в них составляет 9-10 атмосфер, но тут есть некоторые вопросы:
«В 1988 г. исследуя доисторическую атмосферу воздуха законсервированную в кусочках янтаря с возрастом около 80 мл. лет американские геологи Г. Ландис и Р. Бернер установили, что в меловый период атмосфера существенно отличалась не только по составу газов, но и по плотности. Давление было тогда в 10 раз выше. Именно «густой» воздух и позволял летать ящерам с размахом крыльев около 10 м., сделали вывод учёные.
В научной корректности Г. Ландиса и Р. Бернера всё же придётся усомниться. Конечно, замерить давление воздуха в пузырьках янтаря сложнейшая техническая задача и они с нею справились. Но ведь надо учесть, что янтарь, как всякая органическая смола, за столь длительный период усыхал; за счёт потери летучих веществ он делался плотнее и,- естественно, сдавливал находящийся в нём воздух. Отсюда и повышенное давление.»
Другими словами, данный метод не позволяет с точностью утверждать, что давление атмосферы было именно в 10 раз больше, чем сейчас. Он оно было больше современного, поскольку «усыхание» янтаря составляет не более 20% от первоначального объёма, то есть за счёт этого процесса давление воздуха в пузырьках не могло увеличиться в 10 раз. Также вызывает большие сомнения то, что янтарь может храниться в течение миллионов лет, поскольку это органическое соединение, которое достаточно хрупко и уязвимо. Подробнее об этом можно почитать в статье «Ухаживаем за янтарем» http://www.runako.ru/uhod.htm. Перепадов температур боится, механического воздействия боится, прямых лучей Солнца боится, на воздухе окисляется, прекрасно горит. И нас при этом уверяют, что данный «минерал» мог пролежать в Земле миллионы лет и при этом прекрасно сохраниться?
Более вероятна величина в районе 6-8 атмосфер, что хорошо согласуется и с осмотическим давлением внутри организма, и с повышением давления при усыхании кусочков янтаря. И тут мы подходим к ещё одному интересному моменту.
Во-первых, нам не известны природные процессы, которые могли бы привести к уменьшению давления атмосферы Земли. Земля может потерять часть атмосферы либо в случае столкновения с достаточно крупным небесным телом, когда часть атмосферы просто улетает в космос по инерции, либо в результате массированной бомбардировки поверхности Земли атомными бомбами или крупными метеоритами, когда в результате выделения большого количества тепла в момент взрыва часть атмосферы также выбрасывается в околоземное космическое пространство.
Во-вторых, изменение давление не могло понизиться сразу с 6-8 атмосфер до современной одной, то есть уменьшиться в 6-8 раз. Живые организмы просто не смогли бы адаптироваться к такому резкому изменению параметров окружающей среды. Эксперименты показывают, что изменение давления не более чем в два раза не убивает живые организмы, хотя и оказывает на них заметное негативное воздействие. Это означает, что подобных планетарных катастроф должно было произойти несколько, после каждой из которых давление должно было понижаться в 1.5 — 2 раза. Для того, чтобы давление понизилось с 8 атмосфер до современной 1 атмосферы, уменьшаясь каждый раз в 1.5 ра
Атмосферное давление: определение и факты
Книги по метеорологии часто описывают атмосферу Земли как огромный океан воздуха, в котором мы все живем. На диаграммах наша родная планета изображена как окруженная огромным атмосферным морем высотой в несколько сотен миль, разделенным на несколько различных слоев. И все же та часть нашей атмосферы, которая поддерживает всю жизнь, о которой мы знаем, на самом деле чрезвычайно тонкая и простирается вверх только до 18 000 футов — чуть более 3 миль. И та часть нашей атмосферы, которую можно измерить с некоторой степенью точности, составляет около 25 миль (40 километров).Кроме того, дать точный ответ относительно того, где в конечном итоге заканчивается атмосфера, практически невозможно; где-то между 200 и 300 милями появляется неопределенная область, где воздух постепенно разрежается и в конечном итоге растворяется в космическом вакууме.
Так что слой воздуха, окружающий нашу атмосферу, в конце концов не такой уж и большой. Как красноречиво выразился покойный Эрик Слоан, популярный специалист по погоде: «Земля не висит в воздушном море — она висит в космическом море, и на ее поверхности есть чрезвычайно тонкий слой газа.
И этот газ — наша атмосфера.
Воздух имеет вес
Если человек поднимется на высокую гору, например, Мауна-Кеа на Большом острове Гавайи, где вершина достигает 13 796 футов (4206 метров), высока вероятность заражения высотной болезнью (гипоксией). Перед восхождением на вершину посетители должны остановиться в Информационном центре, расположенном на высоте 9 200 футов (2 804 м), где им предлагается акклиматизироваться к высоте, прежде чем идти дальше на гору.«Ну, конечно, — скажете вы, — в конце концов, количество доступного кислорода на такой большой высоте значительно меньше по сравнению с тем, что присутствует на уровне моря».
Но, делая такое заявление, вы ошиблись бы !
Фактически, 21 процент атмосферы Земли состоит из живительного кислорода (78 процентов состоит из азота, а оставшийся 1 процент — из ряда других газов). И доля этого 21 процента практически одинакова как на уровне моря, так и на высокогорье.
Большая разница не в количестве присутствующего кислорода, а скорее в плотности и давлении .
Эта часто используемая аналогия сравнения воздуха с водой («океан воздуха») хороша, поскольку все мы буквально плывем по воздуху. А теперь представьте себе это: высокое пластиковое ведро до краев заполнено водой. Теперь возьмите ледоруб и проделайте отверстие в верхней части ведра. Вода будет медленно стекать. Теперь возьмите кирку и проделайте еще одну дырку в нижней части ведра.Что случается? Там вода будет стремительно брызгать резким потоком. Причина в разнице давления. Давление, которое оказывает вес воды внизу у дна ведра, больше, чем у вершины, поэтому вода «выжимается» из отверстия внизу.
Точно так же давление всего воздуха над нашими головами — это сила, которая проталкивает воздух в наши легкие и выжимает из него кислород в кровоток. Как только это давление снижается (например, когда мы поднимаемся на высокую гору), в легкие поступает меньше воздуха, следовательно, меньше кислорода достигает нашего кровотока, что приводит к гипоксии; опять же, не из-за уменьшения количества доступного кислорода, а из-за уменьшения атмосферного давления.
Максимумы и минимумы
Итак, как атмосферное давление соотносится с суточными погодными условиями? Несомненно, вы видели прогнозы погоды, представленные по телевидению; встроенный в камеру метеоролог, ссылающийся на системы высокого и низкого давления. Что это вообще такое?
Короче говоря, каждый день солнечное тепло меняется по всей Земле. Из-за неравномерного солнечного нагрева температура меняется по всему земному шару; воздух на экваторе намного теплее, чем на полюсах.Таким образом, теплый легкий воздух поднимается и распространяется к полюсам, а более холодный и тяжелый воздух опускается к экватору.
Но мы живем на вращающейся планете, поэтому эта простая картина ветра искажена до такой степени, что воздух скручен вправо от своего направления движения в Северном полушарии и влево в Южном полушарии. Сегодня мы знаем этот эффект как силу Кориолиса, и как прямое следствие этого возникают сильные спирали ветра, которые мы знаем как системы высокого и низкого давления.
В Северном полушарии воздух в областях низкого давления движется по спирали против часовой стрелки и внутрь — например, ураганы — это механизмы Кориолиса, циркулирующие воздух против часовой стрелки. Напротив, в системах высокого давления воздух движется по спирали по часовой стрелке и наружу от центра. В Южном полушарии направление спирали воздуха противоположное.
Итак, почему мы обычно ассоциируем высокое давление с хорошей погодой, а низкое — с неустойчивой погодой?
Системы высокого давления — это «купола плотности», которые давят вниз, в то время как системы низкого давления сродни «атмосферным долинам», где плотность воздуха меньше.Поскольку холодный воздух имеет меньшую способность удерживать водяной пар, чем теплый воздух, облака и осадки вызываются охлаждением воздуха.
Итак, при увеличении давления воздуха температура повышается; под этими куполами высокого давления воздух имеет тенденцию опускаться (так называемое «проседание») на более низкие уровни атмосферы, где температуры выше и могут удерживать больше водяного пара. Любые капли, которые могут привести к образованию облаков, будут испаряться. Конечным результатом обычно становится более чистая и сухая среда.
И наоборот, если мы уменьшаем давление воздуха, воздух имеет тенденцию подниматься на более высокие уровни атмосферы, где температуры ниже. По мере того, как способность удерживать водяной пар уменьшается, пар быстро конденсируется, и облака (которые состоят из бесчисленных миллиардов крошечных капель воды или, на очень больших высотах, кристаллов льда) будут развиваться, и в конечном итоге выпадут осадки. Конечно, мы не могли прогнозировать зоны высокого и низкого давления без использования какого-либо устройства для измерения атмосферного давления.
Введите барометр
Атмосферное давление — это сила, действующая на единицу площади под действием веса атмосферы. Чтобы измерить этот вес, метеорологи используют барометр. Именно Евангелиста Торричелли, итальянский физик и математик, доказал в 1643 году, что он может сопоставить атмосферу со столбом ртути. Он фактически измерил давление, переведя его непосредственно в вес. Инструмент, разработанный Торричелли, был самым первым барометром. Открытый конец стеклянной трубки помещают в открытую емкость с ртутью.Атмосферное давление заставляет ртуть подниматься по трубке. На уровне моря столб ртути поднимется (в среднем) на высоту 29,92 дюйма или 760 миллиметров.
Почему бы не использовать воду вместо ртути? Причина в том, что на уровне моря высота водяного столба составляет около 34 футов! С другой стороны, ртуть в 14 раз плотнее воды и является самым тяжелым веществом, которое остается жидким при обычных температурах. Это позволяет прибору иметь более удобный размер.
Как НЕ использовать барометр
Прямо сейчас у вас может быть барометр, висящий на стене вашего дома или офиса, но, скорее всего, это не трубка с ртутью, а циферблат со стрелкой, указывающей на текущий барометрический чтение давления. Такой прибор называется барометром-анероидом, который состоит из частично откачанной металлической ячейки, которая расширяется и сжимается при изменении давления, и прикреплен к механизму сцепления, который приводит в движение индикатор (стрелка) по шкале, градуированной в единицах давления либо в дюймах или миллибары.
Обычно на шкале индикатора вы также видите такие слова, как «Солнечный», «Сухой», «Неустойчивый» и «Бурный». Предположительно, когда стрелка указывает на эти слова, это означает, что впереди ожидаемая погода. «Солнечный», например, обычно встречается в диапазоне высокого барометрического давления — 30,2 или 30,3 дюйма. «Бурный», с другой стороны, можно найти в диапазоне низкого барометрического давления — 29,2 или ниже, возможно, даже иногда ниже 29 дюймов.
Это все кажется логичным, но все довольно упрощенно.Например, могут быть моменты, когда стрелка будет указывать на «Солнечно», а небо вместо этого будет полностью затянуто облаками. А в других случаях стрелка будет указывать на «бурно», но вы можете увидеть солнечный свет, смешанный с голубым небом и быстро движущимися пухлыми облаками.
Как правильно пользоваться барометром
Именно поэтому, помимо черной стрелки индикатора, стоит обратить внимание на еще одну стрелку (обычно золотую), которую можно вручную настроить на любую часть циферблата.Когда вы проверяете свой барометр, сначала слегка постучите по передней части барометра, чтобы устранить любое внутреннее трение, а затем совместите золотую стрелку с черной. Затем проверьте несколько часов спустя, чтобы увидеть, как черная стрелка изменилась относительно золотой. Давление растет или падает? Если он падает, происходит ли это быстро (возможно, падает на несколько десятых дюйма)? Если так, то, возможно, приближается шторм. Если шторм только что прошел и небо прояснилось, барометр все еще может показывать «штормовую» погоду, но если бы вы установили золотую стрелку несколько часов назад, вы почти наверняка увидели бы, что давление сейчас быстро растет, что предполагает что — несмотря на признаки шторма — приближается ясная погода.
И ваш прогноз можно улучшить еще больше, объединив ваши записи об изменении атмосферного давления с изменением направления ветра. Как мы уже узнали, воздух циркулирует по часовой стрелке вокруг систем высокого давления и против часовой стрелки вокруг систем низкого давления. Поэтому, если вы видите тенденцию к повышению давления и северо-западному ветру, вы можете ожидать, что в целом наступит хорошая погода, в отличие от падающего барометра и восточного или северо-восточного ветра, которые в конечном итоге могут привести к облакам и осадкам.
,Атмосферное давление — Видео по физике от Brightstorm
Итак, давайте поговорим об атмосферном давлении, давлении, связанном с атмосферой воздуха, который окружает нас. Что ж, воздух — это жидкость, это то, что может изменять свою форму и размер, не слишком сильно давя на нее. Это означает, что мы сидим здесь, погруженные в воздух, и это означает, что мы получили поддержку веса всего воздуха над нами, и это означает, что мы получаем давление. Итак, мы готовы, верно? Давление жидкости, давление жидкости, мы идем, плотность жидкости умноженная на g, умноженную на высоту.Хорошо, что мы используем для определения плотности воздуха, я имею в виду, что мы знаем, какая плотность здесь внизу, но плотность воздуха становится меньше по мере того, как мы поднимаемся вверх, поэтому что мы должны использовать в этой формуле и как насчет h? Что мы должны использовать для высоты атмосферы? Что вы думаете? Я не знаю, и на самом деле эти две вещи связаны друг с другом. Так что это своего рода проблема, мы не можем использовать эту формулу, поэтому нам нужно сделать что-то еще, и мы собираемся просто измерить это напрямую. Итак, мы собираемся взять трубку, полную ртути, мы собираемся погрузить ее в ванну с ртутью, а затем мы собираемся поднять трубку вот так, хорошо.
Так вот, внутри трубки не было воздуха, это означает, что ртуть немного упадет вниз, а там ничего нет. Итак, давление здесь 0, поддерживать нечего. Здесь, с другой стороны, вся атмосфера давит вниз. Это означает, что разница в давлении между атмосферным и нулевым давлением поддерживает эту высоту столба ртути. А теперь мы можем умножить плотность на g на h, потому что плотность ртути примерно постоянна, и мы можем измерить высоту.Таким образом, атмосферное давление определяется как плотность ртути, умноженная на 9,8 метра в секунду в квадрате, как бы высока эта колонка ртути. Хорошо, это атмосферное давление пропорционально высоте столба ртути. И это приводит к одному из самых ранних измерений — одной из первых единиц измерения давления — миллиметру ртутного столба.
Теперь, когда мы проводим стандартные измерения, мы обнаруживаем, что атмосферное давление составляет всего около 760 миллиметров ртутного столба. Теперь у нас действительно есть определение того, что мы подразумеваем под стандартной атмосферой, и давайте посмотрим сюда.Одна стандартная атмосфера равна 760 торр. Этот торр — единица измерения, которая должна была быть похожа на миллиметр ртутного столба, но названа в честь физика по имени Торр Чарли, который много работал над давлением в 1600-х годах. Итак, если вы действительно посмотрите на то, что это на самом деле с точки зрения миллиметров ртутного столба, это 763,3, так что это близко, но не совсем то же самое. В США для стандартной единицы измерения часто используют фунты на квадратный дюйм. Одна атмосфера в PSI составляет приблизительно 14,7 фунтов на квадратный дюйм. Так что это значит?
Ну, это означает, что на каждый квадратный дюйм вашего лица, такой дюйм, дюйм, у меня получается 14.7 фунтов на каждый квадратный дюйм. Это очень много, почему я не просто падаю в обморок, я вдыхаю воздух с таким же давлением. Таким образом, воздух выталкивается наружу, воздух снаружи втягивается внутрь, и коже не нужно сильно поддерживать. Те же идеи, что и у аквалангистов, которые ныряют глубоко и вдыхают сжатый воздух, так что давление оказывается выше, и тогда их коже не приходится выдерживать такую большую разницу давлений между водой в воде. океан и их внутренности, их легкие и их кровь и все такое.Так или иначе, это просто небольшая заметка.
Чтобы записать это в единицах СИ, потому что, конечно, мы всегда использовали единицы СИ, он будет записан как 101,325 Паскаля, так что это одна атмосфера, и снова это стандартное определение. Когда кто-то говорит о стандартной атмосфере, это то, что они имеют в виду: 101,325 нет, в любой день реальное давление атмосферы может быть немного выше или немного ниже. Но это просто стандартная атмосфера. Хорошо, давайте продолжим и воспользуемся этой идеей для решения проблемы.Поэтому, когда я всасываю соломинку, по сути, я делаю то же самое, что мы видели здесь с этим столбиком ртути. Я удаляю часть воздуха из верхней части соломинки, так что теперь давление внутри моего рта меньше, чем давление, оказываемое атмосферой. Таким образом, эта разница в давлении заставляет столб воды или содовой или того, что я пью, подниматься в соломинке. Итак, теперь у меня к вам вопрос: какова максимальная высота воды, которую вы можете выдержать в соломе? Итак, если вы сосете так сильно, как только можете, как высоко может подняться эта колонка? Может ли он стать бесконечно высоким?
Ну вот идея, точно так же, как до того, как у вас есть столб воды, и на самом деле то, что поддерживает, это атмосферное давление.Лучшее, что вы можете сделать, — это то же самое, что мы видели с ртутным барометром. 0 давления наверху, теперь вы на самом деле не можете этого сделать, вы можете попробовать, но это было бы похоже на идеализированное лучшее, что вы можете даже представить, делая 0 давления там. А потом здесь внизу атмосферное давление, и оно должно поддерживать этот столб воды. Итак, что мы собираемся сделать, мы собираемся сказать, что атмосферная плотность равна плотности воды, умноженной на ускорение силы тяжести, умноженное на высоту. И это та высота, которую мы ищем, верно? Что ж, теперь это очень просто, мне просто нужно решить и вставить числа, пока все в единицах СИ, и я готов.Таким образом, h будет на 101,325 атмосферы выше плотности воды от 10 до третьей, g 9,8, и когда вы все это разберетесь, вы обнаружите, что это около 10,34. Что это за единица? Ну, все в единицах СИ, поэтому все в единицах СИ, это высота, значит, это метры. Это означает, что максимальная высота столба воды, который вы можете поддерживать на земле, составляет 10,34 метра.
Вы хотите поддерживать больше, вы должны работать еще сильнее, вы не можете просто позволить атмосфере делать вашу работу за вас. Хорошо, конечно, если это более плотная жидкость, такая как ртуть, максимальная высота, которую вы можете выдержать, будет 763.3 миллиметра, что немного меньше, примерно 75% 76,33% метра, хорошо, так что это намного меньше, и это потому, что ртуть намного плотнее воды. Хорошо, давайте продолжим и рассмотрим некоторые другие типы проблем, которые вас могут попросить решить, связанные с этим. Некоторые из них довольно странные, в них нет ничего сложного, но вы, возможно, не думали, что делать, хорошо. Итак, вопрос, каков общий вес атмосферы? Странный вопрос, правда? Вы смотрите на этот вопрос, и вам нравится что? Откуда мне это знать? хорошо, вес атмосферы, помните, мы говорили, что давление, связанное с атмосферой, действительно было связано с ее весом.Итак, я знаю давление, а что насчет веса? Что ж, вес будет, это сила, так что вес будет равен давлению, умноженному на площадь.
Хорошо, я знаю атмосферное давление, где это? Что ж, атмосфера действует на всю планету. Итак, это давление действует по всей поверхности планеты. Ну какова площадь поверхности всей планеты? Это в 4 раза больше радиуса всей планеты в квадрате, 4 пи в квадрате, как мы знаем из геометрии, верно? Итак, теперь все, что мне нужно сделать, это указать цифры, радиус Земли составляет около 6370 километров.Итак, мы снова напишем это 101,325. Я проигнорирую единицы, потому что я знаю, какими будут единицы в конце, пока все в единицах СИ. Я в порядке. Итак, p атмосфера 4 пи равняется 12,54, а затем у нас есть радиус, он должен быть в единицах СИ. Я сказал 6370 километров, мне нельзя использовать километры. Я должен сказать 6,37 умножить на 10 на 6 метров, и я возведу в квадрат. И когда я вставляю все эти числа в калькулятор, я получаю вес в 5,17 раза больше 19, хорошо, а что это за единица? Это вес, так что это сила, и в единицах СИ, выраженных в Ньютонах, это довольно большой вес.
Но это вся атмосфера Земли, и обратите внимание, насколько это просто. Это просто прямо следует из того, что означает вес, что означает давление и что означает площадь? А потом просто хорошо умножьте числа, хорошо, так оно и есть. Хорошо, давайте посмотрим на этот последний, какова высота атмосферы при постоянной плотности. Хорошо, это займет минуту, чтобы понять, что я имею в виду. Помните, что в начале мы хотели использовать умножение плотности на ускорение из-за силы тяжести, умноженное на высоту, чтобы определить давление на поверхности земли во всей атмосфере.Но мы сказали, что есть пара проблем, плотность непостоянна, и мы не знали, что использовать по высоте или по высоте. Итак, в этой задаче нас просят принять постоянную плотность и просто взять плотность на уровне моря. А затем определите, какой будет высота, подходящая высота, которая даст нам измеряемое нами давление.
Хорошо, давайте продолжим и сделаем это, потому что это будет интересный ответ. Итак, мы скажем, что p атмосфера равна плотности gh, я хочу h, так что у нас h будет равно p атмосфере 101,325 при плотности воздуха на уровне моря примерно 1.3 килограмма на кубический метр. Так что у меня будет 1,3, 9,8, и когда вы все это проработаете, вы получите 7,9 км. Это довольно безумно. 7,9 километра — это действительно не очень высокая высота. На самом деле это меньше, чем высота полета большинства самолетов. Хорошо, по крайней мере, однажды они пройдут большие расстояния, и поэтому должен быть воздух над ним, и это напрямую указывает нам на то, что плотность воздуха должна измениться, потому что, если бы она была постоянной, весь путь вверх атмосфера тоже закончится. низкий. Хорошо, это атмосферное давление.
Исследование фона низких и умеренных уровней геомагнитной активности
Эффекты небольших колебаний атмосферного давления (APF) в двух диапазонах периодов, которые в основном связаны с дальним инфразвуком (3–120 с) и внутренними гравитационными волнами (120–120 с) 1200 с) на поведение человека, связанное с возникновением травм, с интервалом в один год. Особый интерес вызывает анализ комбинированных эффектов APFs и геомагнитной активности (GMA), относимых к низким и умеренным уровням.Отношения между ежедневным количеством аварийных транспортных событий из-за спортивных травм (EEI) и среднесуточными интегральными амплитудами APF в двух диапазонах (DHAI и DHAG, соответственно) вместе с планетарным геомагнитным индексом Ap анализируются с использованием регрессионных моделей на основе по категоризации. Как показано, высокий уровень DHAI является довольно сильным метеоротропным фактором, имеющим отношение к увеличению частоты спортивных травм. Высокий DHAG имеет противоположный смысл на фоне низкого DHAI, способствуя уменьшению числа EEI.Рассмотрение комбинированных эффектов APF и GMA показывает, что отрицательные эффекты высокого DHAI более выражены в сочетании с низким уровнем Ap. Результаты обсуждаются с точки зрения необходимости дальнейших медико-метеорологических исследований с использованием баз данных наиболее нарушенных геофизических условий.
1. Введение
Многочисленные исследования в области медицинской метеорологии показывают, что резкие суточные колебания атмосферного давления (AP) являются важным метеоротропным фактором, оказывающим неблагоприятное воздействие на здоровье и различные виды человеческой деятельности.Однако другим биоэффективным физическим характеристикам АП уделяется недостаточное внимание.
Известно, что различные атмосферные явления вызывают колебания давления в очень широком диапазоне периодов. Особый интерес представляют метеоротропные особенности колебаний атмосферного давления (ФДД) в инфразвуковом диапазоне частот (0,003 Гц < f <1 Гц), связанные с естественными шумами в атмосфере [1–3]. Самым мощным источником НПФ в штормовую погоду являются хаотические турбулентные потоки воздуха, вызванные сильным ветром [4, 5].Помимо акустических волн, создаваемых сжимаемостью воздуха, внутренние гравитационные волны (ВГВ), создаваемые вертикальной стратификацией плотности, вносят значительный вклад в атмосферный шум. Их периоды у поверхности Земли находятся в пределах от минуты до нескольких часов [2, 4, 6]. Ниже частоты 0,003 Гц атмосферные волны преобразуются в почти чистый ВГВ. Считается, что ВГВ с периодами от 1 до 40 минут имеют отношение к реакциям человека [7]. Различное количество источников генерирует ВГВ на более низких уровнях атмосферы, включая конвективную и фронтальную активность, сдвиг ветра и топографию.Суровые погодные условия, такие как фронтальная активность, муссоны, грозы и ураганы, а также более интенсивные погодные явления (тайфуны, торнадо, циклоны и т. Д.) Сопровождаются генерацией акустических и акустико-гравитационных волн.
Важной особенностью APF является то, что они проникают в здания [3, 7] и, следовательно, могут быть ответственны за симптомы чувствительности к погодным условиям не только на открытом воздухе, но и внутри помещений. Еще Мезерницкий [8] подчеркивал, что быстрые «микропульсации» атмосферного давления способны самым худшим образом влиять на человеческий организм.Неблагоприятное воздействие инфразвуковых волн, вызванных сильной штормовой активностью, на отдельные виды человеческого поведения, в частности рост числа автомобильных аварий, сообщили Грин и Данн [1].
Также предполагалось, что повышенный уровень тревожности у людей с психическими расстройствами увеличивает количество самоубийств, а более частые случаи сердечной аритмии в дни с сильным ветром, вероятно, по крайней мере частично, связаны с биологической реакцией на ветер. -генерированные быстрые возмущения атмосферного давления [2, 9, 10].Влияние горных ветров на умственную деятельность человека, характеризуемую такими параметрами, как время реакции и / или продолжительность активного внимания, а также косвенные признаки, такие как поведение, приводящее к дорожно-транспортным происшествиям, рассматривалось в ряде исследований [11–13]. ]. Ли и Гарравей [14] обнаружили значительное влияние силы ветра на риск спортивных травм.
Наше предыдущее исследование выявило метеоротропные эффекты высокого APF в дальнем инфразвуковом диапазоне у людей с заболеваниями системы кровообращения [3].Целью этого исследования является изучение того, может ли высокий APF в дальнем инфразвуке и в диапазоне периодов IGW влиять на поведение человека, связанное с возникновением травм. Выбрана спортивная деятельность, так как это область, имеющая отношение к высокому риску травм из-за чрезвычайного внутреннего напряжения, превышающего пределы человеческих возможностей. Таким образом, возможные отношения APF в двух диапазонах периодов (3–120 с и 120–1200 с) с ежедневным количеством аварийных транспортных событий из-за спортивных травм (EEI) анализируются с учетом смешивающего воздействия основных метеорологические параметры.Кроме того, проверена возможная связь эффектов АПП со скоростью ветра. Особый интерес вызывает анализ комбинированных эффектов APF и геомагнитной активности (GMA), поскольку появляется все больше свидетельств, указывающих на биологические эффекты геомагнитных условий.
2. Материалы и методы
2.1. Данные о НПФ и соответствующих природных физических величинах
Исследование проводилось в г. Киев (Украина). Непрерывные измерения атмосферного давления каждые 0.5 с стандартным высокочувствительным (1 Па) микробарометром (Атмосфера – 1, Производственный научно-технический кооператив «Добрый шлях») на открытом воздухе в тот же годичный период (с 1 июля 2005 г. по 30 июня 2006 г.), что и в нашем предыдущем исследование [3], представляют собой базу данных для анализа. Спектральные параметры APF и среднечасовая интегральная амплитуда (HA) в двух диапазонах периодов (HAI: 3–120 с и HAG: 120–1200 с) рассчитывались с помощью специальной компьютерной программы, разработанной нами с использованием программного обеспечения Matlab. Согласно известным определениям [4, 6, 9], периоды APF связаны, прежде всего, с дальним инфразвуком в первом диапазоне (далее I-диапазон) и с IGW во втором диапазоне (впоследствии G-диапазоне).
Трехчасовые метеорологические данные о температуре, относительной влажности, скорости ветра и атмосферном давлении были получены от Киевской геофизической обсерватории. Данные о планетарной геомагнитной активности (Ap-индекс) доступны в Интернете (World Data Center for Geomagnetism, Kyoto).
2.2. База данных по спортивному травматизму, ее обработке и статистическому анализу
База данных по суточному количеству EEI по правилам кодирования ICD-10 получена от Киевской станции экстренной помощи и медицины катастроф.База данных включает только общее количество EEI, относящихся к профессиональным и любительским видам спорта, независимо от вида спорта или степени тяжести травм.
При предварительной обработке годовой базы данных EEI все праздничные дни были исключены из данных. Поскольку данные об EEI и атмосфере за несколько дней были недоступны, всего для анализа было использовано 345 дней, когда имело место 1533 EEI. Число EEI оказалось больше по субботам, чем в другие дни недели, хотя значительная разница для EEI была выявлена только между субботой и средой ( 𝑃 < 0 ,0 5 ). Эффект дня недели контролировался фиктивными переменными.
Число EEI летом было значительно меньше, чем для других сезонов года ( 𝑃 < 0 , 0 0 0 0 1 ), для которых значения EEI сопоставимы. Уменьшение числа EEI летом, по-видимому, связано с особенностями социального расписания (т. Е. С сезоном отпусков, когда занятия любительским спортом и школьными видами спорта сведены к минимуму). Число последовательных дней в течение года (ND) было включено в модель в качестве потенциальной смешивающей переменной для контроля временного тренда годовой модели EEI.Введенная переменная ND позволяет учитывать не только эффекты сезонных изменений естественных физических условий среды, но и особенности социального фона (например, обязательные расписания, характерные для занятий спортом, летнего отдыха и т. Д.).
Число EEI было связано со средним дневным значением HAI (DHAI) и HAG (DHAG). Поскольку APF причинно связаны с турбулентностью, индуцированной ветром, был проведен дополнительный анализ возможной связи эффектов DHA со скоростью ветра (WV).Возможная связь между EEI и геомагнитной активностью (GMA), а также комбинированные эффекты APF и GMA были исследованы с использованием суточного планетарного геомагнитного Ap-индекса [15]. Этот параметр широко используется в биомедицинских исследованиях. Согласно предыдущим исследованиям, Ар-индекс является эффективным параметром психофизиологических и вегетативных реакций человека [16–18]. С другой стороны, индекс Ap считается подходящим критерием для определения степени GMA в средних широтах, описывая спокойный (0 Среднесуточные значения температуры, относительной влажности и атмосферного давления рассматривались как потенциально искажающие метеорологические переменные. Полиномиальная аппроксимация использовалась для визуальной оценки функциональной формы связи между EEI и независимой переменной. Модели регрессии, основанные на категоризации [3, 20], были применены для изучения отношений EEI с независимыми переменными.Преимущество такого подхода перед параметрической регрессией заключается в возможности выявления пороговых эффектов, при этом не требуется строгого предположения о взаимосвязях. Сначала значения независимых переменных были разделены на квартили. Если достоверно разные значения EEI выявлялись только между двумя группами квартилей, то значения независимых переменных разделялись только на две категории. Из-за восприимчивости категориальных методов к изменению границ категорий количество дней для этих двух категорий было определено как n1 и n2 , соответственно, как только проверенная граница между ними выявила наиболее значительную разницу для номер EEI.Непараметрические процедуры сглаживания (метод Лесса) использовались для исключения (пошаговым способом) искажающих паттернов переменных в данных EEI. Все независимые переменные, а также номер EEI обычно не распределяются. Поэтому применялись непараметрические оценки (критерий Манна-Уитни U и критерий ранговой корреляции Шермана). Статистический анализ выполнялся с помощью Matlab 6.6 (Curve Fitting Toolbox), Statistica 6 и MS Excell. Описательная статистика переменных DHA, WV и Ap (таблица 1) указывает на умеренный уровень атмосферной активности в течение анализируемого годичного интервала. Этот интервал также соответствует низкой солнечной активности, что приводит к более низким уровням GMA, измеряемым значением Ap. По расчетам, корреляция между годовыми профилями DHAI и значениями DHAG высока ( 𝑟
знак равно
0
,7 , 𝑃 <
0
,
0
0
0
0
0 1). Существуют значительные сезонные различия в уровнях как DHAI, так и DHAG, так как они значительно выше зимой и весной по сравнению с летом и осенью ( 𝑃
<
0
,
0
0
0
9 и 𝑃
<
0
,
0
5 для DHAI и DHAG, соответственно). Между тем, значения DHAI и DHAG для лета и осени сопоставимы (то же самое верно для зимы и весны). Годовая динамика DHAI и DHAG выявила выраженную корреляцию с WV ( 𝑃 < График температуры (вверху): График давления (средний): График ветра (внизу): Изображение предоставлено: NASA / JPL-Caltech / Cornell / CAB Давление: Черная линия показывает среднесуточное атмосферное давление в паскалях на сайте InSight, а также максимальное и минимальное давление каждого золя на серой полосе. Скорость ветра: Черная линия показывает среднесуточную скорость ветра в метрах в секунду на сайте InSight. Серые полосы показывают максимальное значение ветра для каждого солнца и 90-й процентиль наименьшего ветра, измеренного датчиками ветра. Направление ветра: Черные точки показывают среднесуточное направление ветра в градусах к востоку от севера, как при чтении компаса. Восток расположен под углом 90 градусов, юг — 180 градусов, запад — 270 градусов, а север — 360. Атмосферная непрозрачность (или тау): Это измерение того, сколько солнечного света блокируется пылью в атмосфере, прежде чем она достигает земли. ,Зеленые треугольники — это измерения (с заштрихованными серыми полосами ошибок) тау, сделанные камерой развертывания инструмента (IDC) на манипуляторе робота. Синие треугольники — это измерения, сделанные с помощью инструментальной контекстной камеры (ICC), установленной под верхней палубой InSight. Изображение предоставлено: NASA / JPL-Caltech / Cornell / CAB 3. Результаты
3.1. Природные физические характеристики
95% ДИ Максимум Минимум DHAI (Па) 2.65–3,06 11,07 0,70 DHAG (Па) 2,27–2,50 10,34 0,88 WV (м / с) 2,15–2,37 5,50 0,00 Ap 8,74–11,23 101,87 0,00 Марс Погода | Миссия InSight — посадочный модуль НАСА InSight Mars
Прогноз погоды на 3 дня
График сводки погоды в Elysium Planitia
Этот график обновляется ежедневно на протяжении всей миссии InSight. На графике показаны данные о погоде за последние три сол (марсианских дня) на посадочной площадке InSight у экватора Марса. Время идет в нижней части графика, а самые свежие данные — справа. Числа внизу показывают часы местного времени на посадочном модуле InSight (местное истинное солнечное время, основанное на угле Солнца).Более светлые и темные вертикальные полосы обозначают дневное и ночное время на посадочном модуле соответственно. Соответствующее земное время также отображается в верхней части графика в формате всемирного координированного времени (UTC). Все точки данных представляют собой усредненные за один час откалиброванные данные с космического корабля.
Температура воздуха отображается в градусах Цельсия, измеренная прибором «Температура и ветер для InSight» (TWINS).
Атмосферное давление показано в паскалях, измеренное датчиком давления воздуха, который является частью подсистемы вспомогательного датчика полезной нагрузки (APSS).Типичное давление на уровне моря на Земле составляет около 101325 Паскалей (1013,25 гПа).
Скорость ветра показана в метрах в секунду, измеренная парой штанг TWINS. Зубцы, идущие от каждой точки данных скорости ветра, указывают направление ветра по компасу (например, ветер, дующий с севера, будет иметь зазубрину прямо над точкой; ветер, дующий с запада, будет иметь зазубрину слева) , Полные и половинные флажки, выходящие из зазубрин, указывают скорость ветра, при этом каждая половина флажка соответствует приблизительно двум.5 метров в секунду. Круг вместо зазубрины указывает на скорость ветра менее 2,5 метров в секунду. Сезонный прогноз погоды
Сезонные изменения с момента приземления InSight
На этом графике показано сезонное изменение в Elysium Planitia с момента приземления InSight. Пять наборов данных на этом графике дают полное представление о том, каково было бы провести год возле экватора на Марсе.
Температура воздуха: Черная линия показывает среднесуточную температуру воздуха в градусах Цельсия. Максимальная и минимальная температура воздуха для каждого золя указаны вверху и внизу вертикальной серой полосы.