Из состоит вселенная: Структура Вселенной: устройство, свойства галактик, форма

Структура Вселенной: устройство, свойства галактик, форма

Безусловно, устройство Вселенной многообразно. В её состав входят не простые частицы, а целые структуры и объединения.
К тому же, связь всех элементов превращает Вселенную в то, что мы наблюдаем.

ВселеннаяВселенная

Устройство Вселенной

Установлено, что во Вселенной великое множество галактик. На данный момент их количество около 100 миллиардов. И это только в наблюдаемой нами части.

На самом деле практически все галактики объединены в группы. К тому же, существуют галактические скопления. В которых собраны сотни систем. Помимо этого, обнаружены сверхскопления с тысячами галактик в своём составе.

Сверхскопление галактикСверхскопление галактик

Галактика это связанная силой гравитации система.
По определению, галактики состоят из:

  • Планет, звёзд, чёрных дыр — 1%,
  • Межзвёздный газ и пыль-от 10 до 30%,
  • Тёмная материя — остальная основная масса.

Но есть и свободное место в пространстве, которое называют войд. В них отсутствуют звёзды, и плотность материи менее одной десятой от характерной для Вселенной.

Войд (пустота Вселенной)Войд (пустота Вселенной)

Структура галактики

Человека всегда интересовало, как устроена Вселенная. Бесспорно, структура и масштабы Вселенной удивляют и завораживают. Ведь это неимоверно красивейшее зрелище.
На самом деле, несмотря на разнообразие звёздных объединений, выделена их общая структура.

Ядро является центром. Это как сердце галактики и отдельной галактики в одном. Можно сказать, что сила галактики заключена в нём.

Структура галактики Структура галактики

Диск включает в себя основное количество газа, пыли и звёзд.
Балдж представляет собой часть в центре. Это внутренний и очень яркий элемент галактики.
Гало это внешняя часть сферы, которая плавно переходит от балджа.
Рукава имеются не во всех галактиках. Это структура из молодых звёзд и газа. Могут быть в разной степени закрученными.
Бар или перемычка является плотным формированием из газа и звёзд.

Свойства галактик

Сейчас, насколько это возможно изучив галактики, их разделяют на различные виды и классы.
Более того, установили взаимодействие таких космических комплексов. Они могут влиять друг на друга. Но с условием небольшого расстояния между ними. Кроме того, в зависимости от их массы и размеров.
Именно взаимосвязь между галактиками может привести к их слиянию.

Слияние двух галактикСлияние двух галактик

Форма Вселенной

Вопрос о форме и размере Вселенной один из загадочных и неоднозначных. Потому как однозначного ответа просто нет. Учёные выдвигают разные гипотезы, но подтверждения им не найдено.

Разумеется, что изучение пространства продолжается. Вероятно, когда-нибудь мы узнаем, какой формы наш мир.

Предполагаемая форма ВселеннойПредполагаемая форма Вселенной

Вселенная как живой организм, растёт и развивается. Правда, по своим правилам и законам.
Люди более или менее определили состав и физику Вселенной. К тому же, мы немного разобрались в системе и устройстве Вселенной. Но остаётся много загадок и тайн, которые, возможно, мы сможем постичь в будущем.

Вселенная: ответы на самые известные вопросы космоса

Что мы знаем о мироздании, каков космос? Вселенная – это трудно постижимый человеческим разумом безграничный мир, который кажется нереальным и нематериальным. На самом деле нас окружает материя, безграничная в пространстве и во времени, способная принимать различные формы. Чтобы попытаться понять истинные масштабы космического пространства, как устроена Вселенная, строение мироздания и процессы эволюции, нам потребуется переступить порог собственного мироощущения, взглянуть на окружающий нас мир под другим ракурсом, изнутри.

Размеры Вселенной

Взгляд на бескрайние просторы космоса с Земли

Образование Вселенной: первые шаги

Космос, который мы наблюдаем в телескопы, является только частью звездной Вселенной, так называемой Мегагалактикой. Параметры космологического горизонта Хаббла колоссальные – 15-20 млрд. световых лет. Эти данные приблизительны, так как в процессе эволюции Вселенная постоянно расширяется. Расширение Вселенной происходит путем распространения химических элементов и реликтового излучения. Структура Вселенной постоянно меняется. В пространстве возникают скопления галактик, объекты и тела Вселенной — это миллиарды звезд, формирующие элементы ближнего космоса — звездные системы с планетами и со спутниками.

А где начало? Как появилась Вселенная? Предположительно возраст Вселенной составляет 20 млрд. лет. Возможно, источником космической материи стало горячее и плотное протовещество, скопление которого в определенный момент взорвалось. Образовавшиеся в результате взрыва мельчайшие частицы разлетелись во все стороны, и продолжают удаляться от эпицентра в наше время. Теория Большого взрыва, которая сейчас доминирует в научных кругах, наиболее точно подходит под описания процесса образования Вселенной. Возникшее в результате космического катаклизма вещество представляло собой разнородную массу, состоящую из мельчайших неустойчивых частиц, которые сталкиваясь и разлетаясь, стали взаимодействовать друг с другом.

Большой взрыв

Большой взрыв – теория возникновения Вселенной, объясняющая ее образование. Согласно этой теории изначально существовало некоторое количество вещества, которое в результате определенных процессов взорвалось с колоссальной силой, разбросав в окружающее пространство массу матери.

Спустя некоторое время, по космическим меркам — мгновение, по земному летоисчислению — миллионы лет, наступил этап материализации пространства. Из чего состоит Вселенная? Рассеянное вещество стало концентрироваться в сгустки, большие и малые, на месте которых впоследствии стали возникать первые элементы Вселенной, огромные газовые массивы — ясли будущих звезд. В большинстве случаев процесс формирования материальных объектов во Вселенной объясняется законами физики и термодинамики, однако существует ряд моментов, которые пока не поддаются объяснению. К примеру, почему в одной части пространства расширяющееся вещество концентрируется больше, тогда как в другой части мироздания материя сильно разрежена. Ответы на эти вопросы можно будет получить только тогда, когда станет понятен механизм образования космических объектов, больших и малых.

Сейчас же процесс образования Вселенной объясняется действием законов Вселенной. Гравитационная нестабильность и энергия в разных участках запустили процессы формирования протозвезд, которые в свою очередь под воздействием центробежных сил и гравитации образовали галактики. Другими словами, в то время как материя продолжала и продолжает расширяться, под воздействием сил тяготения начались процессы сжатия. Частицы газовых облаков стали концентрироваться вокруг мнимого центра, образуя в итоге новое уплотнение. Строительным материалом в этой гигантской стройке является молекулярный водород и гелий.

Водород и гелий

Химические элементы Вселенной — первичный строительный материал, из которого шло впоследствии формирование объектов Вселенной

Дальше начинает действовать закон термодинамики, приводятся в действие процессы распада и ионизации. Молекулы водорода и гелия распадаются на атомы, из которых под действием сил гравитации формируется ядро протозвезды. Эти процессы являются законами Вселенной и приняли форму цепной реакции, происходят во всех далеких уголках Вселенной, заполнив мироздание миллиардами, сотнями миллиардов звезд.

Эволюция Вселенной: основные моменты

На сегодняшний день в научных кругах бытует гипотеза о цикличности состояний, из которых соткана история Вселенной. Возникнув в результате взрыва протовещества скопления газа, стали яслями для звезд, которые в свою очередь сформировали многочисленные галактики. Однако достигнув определенной фазы, материя во Вселенной начинает стремиться к своему изначальному, концентрированному состоянию, т.е. за взрывом и последующим расширением вещества в пространстве следует сжатие и возврат к сверхплотному состоянию, к исходной точке. Впоследствии все повторяется, за рождением следует финал и так на протяжении многих миллиардов лет, до бесконечности.

Расширяющаяся Вселенная и черная дыра

Начало и конец мироздания в соответствии с цикличностью эволюции Вселенной

Однако опустив тему образования Вселенной, которая остается открытым вопросом, следует перейти к строению мироздания. Еще в 30-е годы XX века стало ясно, что космическое пространство поделено на районы – галактики, которые являются огромными образованиями, каждое со своим звездным населением. При этом галактики не являются статическими объектами. Скорость разлета галактик от мнимого центра Вселенной постоянно меняется, о чем свидетельствует сближение одних и удаление других друг от друга.

Все перечисленные процессы с точки зрения продолжительности земной жизни длятся очень медленно. С точки зрения науки и этих гипотез — все эволюционные процессы происходят стремительно. Условно эволюцию Вселенной можно разделить на четыре этапа – эры:

  • адронная эра;
  • лептонная эра;
  • фотонная эра;
  • звездная эра.
Шкала эволюции Вселенной

Космическая шкала времени и эволюции Вселенной, в соответствии с которой можно объяснить появление космических объектов

На первом этапе все вещество было сконцентрировано в одной большой ядерной капле, состоящей из частиц и античастиц, объединенных в группы – адроны (протоны и нейтроны). Соотношение частиц и античастиц составляет примерно 1:1,1. Далее наступает процесс аннигиляции частиц и античастиц. Оставшиеся протоны и нейтроны являются тем строительным материалом, из которого формируется Вселенная. Продолжительность адронной эры ничтожна, всего 0,0001 секунды — период взрывной реакции.

Далее, спустя 100 секунд, начинается процесс синтеза элементов. При температуре миллиард градусов в процессе ядерного синтеза образуются молекулы водорода и гелия. Все это время вещество продолжает расширяться в пространстве.

С этого момента начинается длительный, от 300 тыс. до 700 тыс. лет, этап рекомбинации ядер и электронов, формирующих атомы водорода и гелия. При этом наблюдается снижение температуры вещества, падает интенсивность излучения. Вселенная становится прозрачной. Образовавшийся в колоссальных количествах водород и гелий под действием сил гравитации превращает первичную Вселенную в гигантскую строительную площадку. Через миллионы лет начинается звездная эра – представляющая собой процесс образования протозвезд и первых протогалактик.

Такое деление эволюции на этапы вписывается в модель горячей Вселенной, которая объясняет многие процессы. Истинные причины Большого взрыва, механизм расширения материи остаются необъяснимыми.

Строение и структура Вселенной

С образования водородного газа начинается звездная эра эволюции Вселенной. Водород под действием гравитации скапливается в огромные скопления, сгустки. Масса и плотность таких скоплений колоссальны, в сотни тысяч раз превышают массу самой сформировавшейся галактики. Неравномерное распределение водорода, наблюдавшееся на начальной стадии формирования мироздания, объясняет различия в размерах образовавшихся галактик. Там, где должно было существовать максимальное скопление водородного газа, образовались мегагалактики. Где концентрация водорода была незначительной, появились галактики меньших размеров, подобные нашему звездному дому — Млечному Пути.

Строение Вселенной

Версия, в соответствии с которой Вселенная представляет собой точку начала-конца, вокруг которой вращаются галактики на разных этапах развития

С этого момента Вселенная получает первые образования с четкими границами и физическими параметрами. Это уже не туманности, скопления звездного газа и космической пыли (продукты взрыва), протоскопления звездной материи. Это звездные страны, площадь которых огромна с точки зрения человеческого разума. Вселенная становится полна интересных космических феноменов.

С точки зрения научных обоснований и современной модели Вселенной, сначала формировались галактики в результате действия гравитационных сил. Происходило превращение материи в колоссальный вселенский водоворот. Центростремительные процессы обеспечили последующую фрагментацию газовых облаков в скопления, которые стали местом рождения первых звезд. Протогалактики с быстрым периодом вращения превратились со временем в спиральные галактики. Там, где вращение было медленным, и в основном наблюдался процесс сжатия вещества, образовались неправильные галактик, чаще эллиптические. На этом фоне во Вселенной происходили более грандиозные процессы — формирование сверхскоплений галактик, которые тесно соприкасаются своими краями друг с другом.

Сверхскопление галактик

Сверхскопления — это многочисленные группы галактик и скоплений галактик в составе крупномасштабной структуры Вселенной. В пределах 1 млрд св. лет находится около 100 сверхскоплений

С этого момента стало ясно, что Вселенная представляет собой огромную карту, где континентами являются скопления галактик, а странами — мегагалактики и галактики, образовавшиеся миллиарды лет назад. Каждое из образований состоит из скопления звезд, туманностей, скоплений межзвездного газа и пыли. Однако все это население составляет лишь 1% от общего объема вселенских образований. Основную массу и объем галактик занимает темная материя, природу которой выяснить не представляется возможным.

Разнообразие Вселенной: классы галактик

Стараниями американского ученого астрофизика Эдвина Хаббла мы теперь имеем границы Вселенной и четкую классификацию галактик, населяющих ее. В основу классификации легли особенности структуры этих гигантских образований. Почему галактики имеют разную форму? Ответ на этот и многие другие вопросы дает классификация Хаббла, в соответствии с которой Вселенная состоит из галактик следующих классов:

  • спиральные;
  • эллиптические;
  • иррегулярные галактики.

К первым относятся наиболее распространенные образования, которыми заполнено мироздание. Характерными чертами спиральных галактик является наличие четко выраженной спирали, которая вращается вокруг яркого ядра либо стремится к галактической перемычке. Спиральные галактики с ядром обозначаются символами S, тогда как у объектов с центральной перемычкой обозначение уже SB. К этому классу относится и наша галактика Млечный Путь, в центре которой ядро разделено светящейся перемычкой.

Галактика Млечный путь

Типичная спиральная галактика. В центре отчетливо видны ядро с перемычкой от концов которой исходят спиральные рукава.

Подобные образования разбросаны по Вселенной. Ближайшая к нам спиральная галактика Андромеда — гигант, который стремительно сближается с Млечным Путем. Наибольшей из известных нам представительниц этого класса является гигантская галактика NGC 6872. Диаметр галактического диска этого монстра составляет примерно 522 тысячи световых лет. Находится этот объект на расстоянии от нашей галактики в 212 млн. световых лет.

Следующим, распространенным классом галактических образований являются эллиптические галактики. Их обозначение в соответствии с классификацией Хаббла буква Е (elliptical). По форме эти образования эллипсоиды. Несмотря на то, что подобных объектов во Вселенной достаточно много, эллиптические галактики не отличатся выразительностью. Состоят они в основном из гладких эллипсов, которые наполнены звездными скоплениями. В отличие от галактических спиралей, эллипсы не содержат скоплений межзвездного газа и космической пыли, которые являются основными оптическими эффектами визуализации подобных объектов.

Типичный представитель этого класса, известный на сегодняшний день — эллиптическая кольцевая туманность в созвездии Лиры. Этот объект расположен от Земли на расстоянии 2100 световых лет.

Эллиптическая галактика

Вид эллиптической галактики Центавр А в телескоп CFHT

Последний класс галактических объектов, которыми населена Вселенная — иррегулярные или неправильные галактики. Обозначение по классификации Хаббла – латинский символ I. Основная черта – это неправильная форма. Другими словами у подобных объектов нет четких симметричных форм и характерного рисунка. По своей форме такая галактика напоминает картину вселенского хаоса, где звездные скопления чередуются с облаками газа и космической пыли. В масштабах Вселенной иррегулярные галактики — явление частое.

В свою очередь неправильные галактики делятся на два подтипа:

  • иррегулярные галактики I подтипа имеют сложную неправильной формы структуру, высокую плотную поверхность, отличающуюся яркостью. Нередко такая хаотическая форма неправильных галактик является следствием разрушившихся спиралей. Типичный пример подобной галактики — Большое и Малое Магелланово Облако;
  • иррегулярные, неправильные галактики II подтипа имеют низкую поверхность, хаотическую форму и не отличаются высокой яркостью. Вследствие снижения яркости, подобные образования трудно обнаружить на просторах Вселенной.

Большое Магелланово Облако является самой ближайшей к нам неправильной галактикой. Оба образования в свою очередь являются спутниками Млечного Пути и могут быть в скором времени(через 1-2 млрд. лет) поглощены более крупным объектом.

Большое Магелланово облако

Неправильная галактика Большое Магелланово облако — спутник нашей галактики Млечный Путь

Несмотря на то, что Эдвин Хаббл достаточно точно расставил галактики по классам, данная классификация не является идеальной. Больше результатов мы могли бы достичь, включи в процесс познания Вселенной теорию относительности Эйнштейна. Вселенная представлена богатством разнообразных форм и структур, каждая из которых имеет свои характерные свойства и особенности. Недавно астрономы сумели обнаружить новые галактические образования, которые по описанию являются промежуточными объектами, между спиральными и эллиптическими галактиками.

Млечный Путь — самая известная нам часть Вселенной

Две спиральные ветви, симметрично расположенные вокруг центра, составляют основное тело галактики. Спирали в свою очередь состоят из рукавов, которые плавно перетекают друг в друга. На стыке рукавов Стрельца и Лебедя расположилось наше Солнце, находящееся от центра галактики Млечный Путь на расстоянии 2,62·10¹⁷км. Спирали и рукава спиральных галактик – это скопления звезд, плотность которых увеличивается по мере приближения к галактическому центру. Остальную массу и объем галактических спиралей составляет темная материя, и только малая часть приходится на межзвездный газ и космическую пыль.

Звездный адрес Солнечной системы

Положение Солнца в рукавах Млечного Пути, место нашей галактики во Вселенной

Толщина спиралей составляет примерно 2 тыс. световых лет. Весь это слоеный пирог находится в постоянном движении, вращаясь с огромной скоростью 200-300 км/с. Чем ближе к центру галактики, тем выше скорость вращения. Солнцу и нашей Солнечной системе потребуется 250 млн. лет, чтобы совершить полный оборот вокруг центра Млечного Пути.

Наша галактика состоит из триллиона звезд, больших и малых, сверхтяжелых и средней величины. Самое плотное скопление звезд Млечного Пути — рукав Стрельца. Именно в этой области наблюдается максимальная яркость нашей галактики. Противоположная часть галактического круга наоборот, менее яркая и плохо различима при визуальном наблюдении.

Центральная часть Млечного Пути представлена ядром, размеры которого предположительно составляют 1000-2000 парсек. В этой самой яркой области галактики сосредоточено максимальное количество звезд, которые имеют различные классы, свои пути развития и эволюции. В основном это старые сверхтяжелые звезды, находящиеся на финальной стадии Главной последовательности. Подтверждением наличия стареющего центра галактики Млечный Путь является наличие в этой области большого числа нейтронных звезд и черные дыры. Действительно – центр спирального диска любой спиральной галактики — сверхмассивная черная дыра, которая словно гигантский пылесос всасывает в себя небесные объекты и реальную материю.

Черная дыра в центре Млечного Пути

Сверхмассивная черная дыра, находящаяся в центральной части Млечного Пути – место гибели всех галактических объектов

Что касается звездных скоплений, то ученым сегодня удалось классифицировать два вида скоплений: шарообразные и рассеянные. Помимо звездных скоплений спирали и рукава Млечного Пути, как и любой другой спиральной галактики, состоят из рассеянной материи и темной энергии. Являясь последствием Большого взрыва, материя пребывает в сильно разреженном состоянии, которое представлено разреженным межзвездным газом и частицами пыли. Видимая часть материи представляет собой туманности, которые в свою очередь делятся на два типа: планетарные и диффузные туманности. Видимая часть спектра туманностей объясняется преломлением света звезд, которые излучают свет внутри спирали по всем направлениями.

В этом космическом супе и существует наша Солнечная система. Нет, мы не единственные в этом огромном мире. Как и у Солнца, многие звезды имеют свои планетарные системы. Весь вопрос в том, как обнаружить далекие планеты, если расстояния даже в пределах нашей галактики превышают продолжительность существования любой разумной цивилизации. Время во Вселенной измеряется другими критериями. Планеты со своими спутниками, самые мелкие объекты во Вселенной. Количество подобных объектов не поддается исчислению. Каждая из тех звезд, которые находятся в видимом диапазоне, могут иметь собственные звездные системы. В наших силах увидеть только самые ближайшие к нам существующие планеты. Что происходит по соседству, какие миры существуют в других рукавах Млечного Пути и какие планеты существуют в других галактиках, остается загадкой.

Планеты вокруг других звезд

Kepler-16 b — экзопланета у двойной звезды Kepler-16 в созвездии Лебедь

Заключение

Имея только поверхностное представление о том, как появилась и как эволюционирует Вселенная, человек сделал лишь маленький шаг на пути постижения и осмысливания масштабов мироздания. Грандиозные размеры и масштабы, с которыми ученым приходится сегодня иметь дело, говорят о том, что человеческая цивилизация — лишь мгновение в этом пучке материи, пространства и времени.

Пучок материи

Модель Вселенной в соответствии с понятием присутствия материи в пространстве с учетом времени

Изучение Вселенной идет от Коперника и до наших дней. Сначала ученые отталкивались от гелиоцентрической модели. На деле оказалось, что космос не имеет реального центра и все вращение, движение и перемещение происходит по законам Вселенной. Несмотря на то, что существует научное объяснение происходящим процессам, вселенские объекты распределены на классы, виды и типы, ни одно тело в космосе не похоже на другое. Размеры небесных тел примерны, так же как и их масса. Расположение галактик, звезд и планет условно. Все дело в том, что во Вселенной нет системы координат. Наблюдая за космосом, мы делаем проекцию на весь видимый горизонт, считая нашу Землю нулевой точкой отсчета. На самом деле мы только микроскопическая частичка, затерявшаяся в бесконечных просторах Вселенной.

Вселенная и время

Вселенная – это субстанция, в которой все объекты существуют в тесной привязке к пространству и времени

Аналогично привязки к размерам, следует рассматривать время во Вселенной, как главную составляющую. Зарождение и возраст космических объектов позволяет составить картину рождения мира, выделить этапы эволюции мироздания. Система, с которой мы имеем дело, тесно связана временными рамками. Все процессы, протекающие в космосе, имеют циклы — начало, формирование, трансформацию и финал, сопровождающийся гибелью материального объекта и перехода материи в другое состояние.

определение, описание, исследования с фото

Вселенная – это огромнейшее и неисследованное место. Важно понимать, что на изучение конкретной темы или даже вопроса могут уходить десятки, а то и сотни лет. Существует миллион различных направлений, включающих сотни ответвлений. Чтобы вас не ошарашил такой информационный массив, мы предлагаем список тем, которые раскрывают информацию о Вселенной.

Некоторые думают, что Вселенная закончится взрывом. Она будет сокращаться, пока не вернется в исходную точку. За этим последует новый Большой Взрыв и образуется следующая Вселенная. Это основа циклической версии.

Большая часть научного сообщества соглашается с тем, что Вселенная плоская. Это основание базируется на показаниях прибора WMAP (изучение реликтового излучения). Но есть и те, кто не согласен. Не будем забывать, что не так давно все свято верили в плоскость Земли, так что в таких вопросах всегда остаются сомнения.

Конечно, вышеописанные сведения – всего лишь кратчайшее изложение, а вот детали вы узнаете по ссылкам. Каждая статья раскрывает интересующий вопрос и излагает все на понятном языке. Поэтому вам не придется тратить всю жизнь на изучение Вселенной, ведь ученые предоставили вам готовые сведения. Вы сможете больше узнать о Солнечной системе с описанием, характеристикой и качественными фото планет, а также изучить звезды, галактики, экзопланеты, туманности, звездные скопления, пульсары, квазары, черные дыры, созвездия, темную энергию и темную материю. Нужно лишь перейти по заинтересовавшей ссылке.

Созвездия
Получив нужные сведения, вы сможете видеть в ночном полотне не просто случайные звезды, а реальных персонажей, за которыми стоят истории, мифы и легенды. Впустите в свою жизнь созвездия, с легкостью находите их в безграничном пространстве и без проблем ориентируйтесь в родной галактике.
Созвездия

Зимнего неба

Весеннего неба

Летнего неба

Осеннего неба

Так что же такое Вселенная?

Некоторые даже не понимают, насколько сложным и масштабным выглядит вопрос: «Что такое Вселенная?». Можно потратить десятилетия на исследования и рассекретить лишь верхушку айсберга. Возможно, мы говорим не просто об огромном мире, но бесконечном. Поэтому нужно быть энтузиастом своего дела, чтобы погрузиться во все эти загадки, на расшифровку которых может уйти вся жизнь.

Что же такое Вселенная? Если емко, то это сумма всего существующего. Это все время, пространство, материя и энергия, образовавшиеся и расширяющиеся вот уже 13.8 миллиардов лет. Никто не может точно сказать, насколько обширны просторы нашего мира и пока нет точных предсказаний финала. Но исследования выдвигают множество теорий и пазл за пазлом собирают картинку.

Определение Вселенной

Само слово «Вселенная» происходит от латинского «universum». Впервые его использовал Цицерон, а уже после него оно стало общепринятым у римских авторов. Понятие обозначало мир и космос. На тот момент люди в этих словах видели Землю, все известные живые существа, Луну, Солнце, планеты (Меркурий, Венера, Марс, Юпитер и Сатурн) и звезды.

Геоцентрическая концепция Вселенной Птолемея, созданная Бартоломеу Велью

Геоцентрическая концепция Вселенной Птолемея, созданная Бартоломеу Велью

Иногда вместо «Вселенная» используют «космос», которое с греческого переводится как «мир». Кроме того, среди терминов фигурировали «природа» и «все». В современном понятии вмешают все, что существует во Вселенной – наша система, Млечный Путь и прочие структуры. Также сюда входят все виды энергии, пространство-время и физические законы.

Происхождение Вселенной

Как появился космос и все, что мы знаем? Вселенная берет свое начало 13.8 лет назад с Большого Взрыва. Это не единственное предположение (теория колеблющейся Вселенной или устойчивого состояния), но только ему удается объяснить появление всей материи, физических законов и прочих формирований.  Теория также способна рассказать, почему происходит расширение, что такое реликтовое излучение и прочие известные явления.

Теория Большого Взрыва: сингулярность – стартовая точка, с последующим расширением.

Теория Большого Взрыва: сингулярность – стартовая точка, с последующим расширением

Ученые начали рассматривать Вселенную с настоящего момента и постепенно возвращались к стартовой точке. Отсюда выплыло предположение, что все началось с бесконечной плотности и исчисляемого времени, запустивших процесс расширения. После первого этапа температурные показатели упали, что помогло сформироваться субатомным частицам, а после них – простые атомы. Позже гигантские облака этих формирований соединились с гравитационными силами, порождая звезды и галактики.

Официальный возраст Вселенной – 13.8 миллиардов лет. Проводя тесты с ускорителями частиц, теоретическими принципами, а также исследуя небесные объекты, ученым удалось воссоздать этапы событий, чтобы вернуть нас с современности в мгновение начала всего.

Но наиболее отдаленный период Вселенной (от 1043 до 1011 секунд) все еще вызывает споры. Стоит учитывать, что современные физические законы к тому времени еще не применимы, поэтому никто не может понять, как повела себя Вселенная. Но все же есть сторонники некоторых теорий, которые помогли выделить главные временные промежутки вселенской эволюции: сингулярность, инфляция и охлаждение.

Графическое представление сингулярности Вселенной

Графическое представление сингулярности Вселенной

Сингулярность (эпоха Планка) – самый ранний период Вселенной. На этом этапе материя была собрана в одной точке бесконечной плоскости, где царствовали экстремальные температурные режимы. В физическом плане доминирует исключительно сила гравитации.

Это время длилось от 0 до 1043 секунд. Свое второе название эпоха получила в честь Планка, потому что лишь эта обсерватория способна проникнуть в такой промежуток. Вселенная была лишенной устойчивости, потому что вещество было не просто невероятно накаленным, но и сверхплотным. По мере расширения и снижения накаленности, возникли физические законы. С 1043 до 1036 секунды запустился температурный переход.

Начали выделяться фундаментальные силы, отвечающие за вселенские механизмы. Первой была гравитация, затем электромагнетизм и первая ядерная сила. С 1032 и до сегодня длится инфляция. Моделирование демонстрирует, что Вселенная была наполнена однородной энергией с высокой плотностью. Расширение заставило ее терять температуру.

Это началось с 1037 секунд, когда выделение сил привело к экспоненциальному росту. В этот промежуток стартует барионегез – гипотетическое событие, характеризующееся настолько высокими температурными показателями, что случайные движения частиц осуществлялись на релятивистских скоростях. При столкновениях они создавались и уничтожались. Полагают, что именно из-за этого материя преобладает над антиматерией.

Когда инфляция подошла к концу, пространство представляло собою кварк-глюонную плазменную структуру и прочие элементарные частички. С остыванием материя сливалась и формировала новые структуры. Период охлаждения наступил с уменьшением температуры и плотности. В этом процессе элементарные частички и фундаментальные силы приобрели современный вид.

Есть мнение, что через 1011 секунд энергия стремительно снизилась. Еще спустя 106 секунд кварки и глюоны объединились в барионы, что привело к их переизбытку. Температура больше не достигала необходимой отметки, поэтому у протонов-антипротонов исчезла возможность формировать новые пары. Произошла массовая аннигиляция, оставившая лишь 1010 изначального их количества. То же самое случилось и для электронов и протонов спустя секунду.

Оставшиеся протоны, электроны и нейтроны оставались статичными, поэтому вселенская плотность обеспечивалась только фотонами и нейтрино. Прошло еще несколько минут, и начался нуклеосинтез.

Температура остановилась на отметке в миллиард кельвинов, а плотность уменьшилась. Поэтому протоны и нейтроны начали сливаться, формируя изотоп водорода (дейтерий) и атомы гелия. Но большая часть протонов все же оставалась «одиночной».

Проходит 379000 лет и электроны, объединенные с ядрами водорода, создали атомы, а отделенное излучение продолжило расширяться. Сейчас мы знаем его как реликтовое (древнейший вселенский свет). По мере расширения, его плотность и энергия терялись. Современная температура –  2.7260 ± 0,0013 К (-270,424 °C) и плотность энергии 0,25 эВ/см3. Вы можете посмотреть в любую сторону и повсюду натолкнетесь на остатки этого излучения.

Эволюция Вселенной

Как происходил процесс развития и эволюции Вселенной? В течение следующих миллиардов лет гравитация заставила более плотные области притягиваться. В этом процессе формировались газовые облака, звезды, галактические структуры и прочие небесные объекты. Этот период именуют Структурной Эпохой, так как именно в этот временной отрезок зарождалась современная Вселенная. Видимое вещество распределялось на различные формирования (звезды в галактики, а те в скопления и сверхскопления).

Если говорить о деталях процесса, то они зависят количества и разновидности материи. Можно выделить 4 типа темной: холодная, теплая, горячая и барионная. Из них стандартной считается Лямбда-CDM (холодная темная материя). В ней частички перемещаются со скоростью, уступающей скорости света.

Она составляет 23% вселенской материи, а барионная достигает лишь 4.6%. Лямбда дает отсылку к космологической константе, созданной Альбертом Эйнштейном. Она доказывала, что равновесие массы-энергии остается в статике.

Этапы эволюции Вселенной. Нажмите на изображение, чтобы его увеличить

Этапы эволюции Вселенной. Нажмите на изображение, чтобы его увеличить

Также связана с темной энергией, послужившей причиной ускорения Вселенной и оставляющей ее структуру однородной. Темную энергию нельзя увидеть напрямую, но ее наличие доказывают многочисленные теории. Считается, что 73% пространства насыщено ею.

Гравитация преобладала над всеми процессами еще на ранних этапах, когда барионное вещество располагалось ближе. Но темная энергия росла и стала доминирующей силой. Это привело к ускорению всех процессов и старту Эпохи Ускорения.

Считают, что это время началось 5 миллиардов лет назад. Этот период описывает в своих уравнениях Эйнштейн, хотя все же настоящая природа темной материи еще не раскрыта. Кроме того, все еще не придумали схем, способных объяснить, что произошло во Вселенной до 1015 секунд после возникновения всего.

Однако ученые не теряют надежды и экспериментируют с Большим адронным коллайдером, пытаясь воссоздать необходимые условия для Большого Взрыва. Прорыв в этой области поможет понять, как гравитация взаимодействует со слабой и сильной ядерными силами, а также электромагнетизмом.

Структура Вселенной

Хотя старейший свет достигает 13.8 миллиардов световых лет (реликтовое излучение) это не реальные размеры Вселенной. Не будем забывать, что вот уже миллиарды лет пространство расширяется со скоростью выше скорости света. Именно из-за этого нам не удается увидеть край (если он есть).

Полагают, что Вселенная простирается на 91 миллиардов лет (29 миллиардов парсек) в диаметре. А это значит, что в любую сторону от нашей системы нам доступно 46 миллиардов световых лет наблюдения. Однако, мы все еще не знаем истинного размера космического пространства, так что есть вариант, что Вселенная не имеет границы.

Диаграмма Вселенной Лямбда-CBR (от Большого Взрыва к нашей эре).

Диаграмма Вселенной Лямбда-CBR (от Большого Взрыва к нашей эре).

Вещество распределяется в соотношении со структурами. Если брать галактические пределы, то мы видим планеты, звезды и туманности, чередующиеся с пустыми участками. Даже если увеличивать картинку, то сама суть остается той же. Галактики отделены газовыми и пылевыми участками. На высшем уровне мы видим сверхскопления, формирующиеся в нити, разделенные гигантскими космическими пустотами.

Пространство-время способно существовать в одной из трех конфигураций: положительно-изогнутая, отрицательно-изогнутая и плоская. Подобные виды основываются на 4 измерениях (координаты x, y, z и время) и зависят от космического расширения (повлияет бесконечность или конечность пространства).

Положительно-изогнутая представляет собою четырехмерную сферу. У нее есть конец, но не виден резкий край. Отрицательно-изогнутую еще называют открытой, потому что напоминает седло, у которого нет границ. Нижний рисунок демонстрирует возможные варианты форм Вселенной.

Возможные формы наблюдаемой Вселенной.

Возможные формы наблюдаемой Вселенной.

В первом случае, расширение Вселенной должно было остановиться из-за огромного количества энергии. Во втором ее слишком мало, чтобы остановить его. А в последнем – критическое число энергии заставило бы расширение остановиться, но через бесконечное время.

Что ждет Вселенную?

Если мы знаем о наличии стартовой точки, то нас должен волновать и финиш. Что же нас ждет? Вечное расширение? Или же возвращение в компактный первородный шарик? Как умрет Вселенная? Эти вопросы возродились, когда велись дискуссии об истинной модели Вселенной. В 1990-х годах научное сообщество определилось с Большим Взрывом, создав два возможных варианта конца.

Познакомьтесь с Большим Сжатием. Вселенная продолжит разрастаться до максимального объема, а затем запустит процесс саморазрушения. Это возможно, если массовая плотность превышает критическую. Если же это значение такое же или ниже, тогда в игру вступает Большое Замораживание. Пространство также продолжит расширяться, пока звезды не смогут поддерживать процесс формирования (израсходуется весь газ). Все уже существующие звезды сгорели бы и трансформировались в белых карликов, а нейтронные – в черные дыры.

Возможные варианты конца Вселенной

Возможные варианты конца Вселенной

Конечно, черные дыры стали бы притягиваться, порождая настоящих гигантских монстров. Средняя температура пространства достигла бы абсолютного нуля, и черные дыры испарились. Энтропия вырастет до такой степени, что запустит сценарий тепловой смерти, когда уже просто невозможно извлечь никакой организованной формы энергии.

Есть также теория фантомных энергий. Она полагает, что галактические скопления, планеты, звезды, ядра и даже материя разорвутся из-за расширения. Такой исход называют Большим разрывом.

История изучения Вселенной

Если говорить в общем, то природу вещей изучают еще с начала времен. Наиболее ранние известия о Вселенной представлены в мифах и передавались устно. По большей части все начинается с момента творения, за которое ответственен Бог или боги.

Астрономия появилась в Древнем Вавилоне. Созвездия и календари фигурируют у них еще 2000 лет до н.э. Более того, им даже удалось создать предсказания на последующую тысячу лет. Греческие и индийские ученые подходили к вопросам Вселенной с философской стороны, сосредотачиваясь не на божественном вмешательстве, а на причине и следствии. Можно вспомнить Фалеса и Анаксимандра, утверждавших, что все появилось из первозданной материи.

Эмпедокл (5-й век до н.э.) стал первым в западном мире, кто предположил, что Вселенная представлена землей, воздухом, водой и огнем. Эта система стала очень популярной среди философов, так как сильно походила на китайскую: металл, дерево, вода, огонь и земля.

Ранняя атомная теория утверждала, что разные материалы состоят из атомов различной формы

Ранняя атомная теория утверждала, что разные материалы состоя

Что такое Вселенная и из чего она состоит?

Вселенная… Слово-то какое страшное. Масштабы того, что обозначается эти словом, не поддаются никакому осмыслению. Для нас проехать 1000 км — это уже расстояние, а что они значат в сравнении с гигантской цифрой, которая обозначает минимально возможный, с точки зрения учёных, диаметр нашей Вселенной.


Эта цифра не просто колоссальна — она ирреальна. 93 миллиарда световых лет! В километрах это выражается следующим числом 879 847 933 950 014 400 000 000.

Что такое Вселенная?
Из чего состоит наша Вселенная?
Расширение Вселенной
Что означает слово «Вселенная»?
Что находится в центре Вселенной?
Что находится за пределами Вселенной?
Что ещё мы знаем о Вселенной?

Что такое Вселенная?

Что же такое Вселенная? Как объять разумом сие необъятное, ведь это же, как писал Козьма Прутков, никому не дано. Давайте обопрёмся на всем нам знакомые, простые вещи, способные путём аналогий привести нас к искомому постижению.

Из чего состоит наша Вселенная?

Чтобы разобраться в этом вопросе, пойдите прямо сейчас на кухню и возьмите поролоновую губку, которую вы используете для мытья посуды. Взяли? Так вот, вы держите в руках модель Вселенной. Если вы через лупу рассмотрите структуру губки поближе, то увидите, что она представляет собой множество открытых пор, ограниченных даже не стенками, а скорее перемычками.

Нечто подобное представляет собой и Вселенная, но только в качестве материала для перемычек используется не поролон, а… скопления галактик… Не планет, не звёздных систем, а галактик! Каждая из этих галактик состоит из сотен миллиардов звёзд, вращающихся вокруг центрального ядра, и каждая может иметь размер до сотен тысяч световых лет. Расстояние между галактиками обычно составляет около миллиона световых лет.

Расширение Вселенной

Вселенная не просто большая, она ещё вдобавок постоянно расширяется. Этот установленный с помощью наблюдения красного смещения факт, лёг в основу теории Большого взрыва.

Согласно данным НАСА возраст Вселенной с момента Большого взрыва, положившего ей начало, составляет приблизительно 13,7 миллиардов лет.

Что означает слово «Вселенная»?

Слово «Вселенная» имеет старославянские корни и, фактически, является калькой с греческого слово ойкумента (οἰκουμένη), происходящего от глагола οἰκέω «населяю, обитаю». Изначально этим словом обозначалась вся обитаемая часть мира. В церковном языке и по сей день сохраняется подобное значение: например, Константинопольский Патриарх в своём титуле имеет слово «Вселенский».

Термин происходит от слова «вселение» и только лишь созвучен слову «всё».

Что находится в центре Вселенной?

Вопрос о центре Вселенной — крайне запутанная штука и однозначно ещё не решён. Проблема в том, что непонятно, есть он вообще или его нет. Логично предположить, что, раз был Большой взрыв, из эпицентра которого и начали разлетаться бесчисленные галактики, значит, проследив траекторию каждой из них, можно на пересечении этих траекторий найти центр Вселенной. Но дело в том, что все галактики удаляются друг от друга приблизительно с равной скоростью и из каждой точки Вселенной наблюдается практически одна и та же картина.

Натеоретизировано здесь столько, что любой академик свихнётся. Даже привлекалось не раз четвёртое измерение, будь оно неладно, но особой чёткости в вопросе нет и по сей день.

Если же нет внятного определения центра Вселенной, то говорить о том, что находится в этом самом центре, мы считаем пустым занятием.

Что находится за пределами Вселенной?

О, это вопрос очень интересный, но такой же неопределённый, как и предыдущий. Вообще неизвестно, есть ли у Вселенной пределы. Возможно, их нет. Возможно, они есть. Возможно, кроме нашей Вселенной есть и другие с иными свойствами материи, с отличными от наших законами природы и мировыми константами. Никто не может доказательно дать ответ на подобный вопрос.

Проблема заключается в том, что мы имеем возможность наблюдать Вселенную лишь на расстоянии в 13,3 миллиарда световых лет. Почему? Очень просто: мы же помним, что возраст Вселенной составляет 13,7 миллиардов лет. Учитывая, что наше наблюдение происходит с задержкой, равной времени, потраченному светом на прохождение соответствующего расстояния, мы не можем наблюдать Вселенную ранее того момента как она, собственно, появилась на свет. На этом расстоянии мы видим Вселенную ясельного возраста…

Что ещё мы знаем о Вселенной?

Очень много и ничего! Мы знаем о реликтовом свечении, о космических струнах, о квазарах, чёрных дырах и о многом и многом другом. Некоторая часть этих знаний может быть обоснована и доказана; кое-что является лишь теоретическими выкладками, которые не могут быть подтверждены доказательно, а что-то — лишь плод богатой фантазии псевдоучёных.

Но одно мы знаем наверняка: никогда не настанет момент, в который мы сможем, облегчённо вытерев пот со лба, сказать: «Фу-у-х! Вопрос, наконец-то полностью изучен. Здесь больше ловить нечего!»

что это такое? Модель и масштабы Вселенной.

Что такое Вселенная? Определение.

Человечество в целом, и его отдельных представителей всегда интересовал вопрос: «Что такое Вселенная?» Как она зародилась? Каковы модель и масштабы Вселенной? По каким законам живет и развивается Вселенная? Как построить свою жизнь для того, чтобы жить в гармонии со Вселенной и Высшими силами?

В данной статье постараемся подробно ответить на большинство возникающих вопросов об устройстве Вселенной с точки зрения эзотерики.

Вселенная это

Что такое Вселенная? Определение

Вселенная – это необъятное пространство, которое невозможно охватить ни взглядом, ни человеческим разумом. Пространство, в котором рождаются, развиваются, стареют и умирают планеты и солнечные системы. Бесконечное множество галактик, управляемых Высшими силами – все это называется Вселенной.

Материалисты-прагматики считают, что Она возникла после большого взрыва в космическом пространстве. Однако в последнее время все большую популярность набирает мнение эзотериков о том, что саму Вселенную и все, что в ней находится, сотворил Высший разум и его иерархия.

Определение

Вселенная – это энергетическая единица, обладающая великой мудростью и знанием. Она основана на геометрии и содержит

частотные коды. Вселенная это информация (геометрическая форма энергии плюс частота и измерение = информация). То есть, Вселенная – это информация, которая представлена в виде пакетов энергии, имеющих форму, частоту и измерение.

Вселенная – это «мыслеформа» Творца. Это лаборатория, где Творец ставит опыты «руководствуясь» базовыми компонентами.

Модель и масштабы Вселенной.

Масштабы Вселенной

Каковы же масштабы Вселенной? С точки зрения математики, наша Вселенная – это материнская реальность. Ее можно сравнить с математической точкой, размеры которой не известны.

Масштабы Вселенной безграничны, у нее нет начала и нет окраин.  Она может быть как и бесконечно большой, так и бесконечно малой.

Как формируется Вселенная?

Невозможно сказать, что Вселенная уже сформирована, поскольку это пространство с постоянным созданием и разрушением галактик.

Считается, что изначально образовалась центральная точка с мощным импульсом, которая излучала колоссальную энергию и притягивала к себе все, что ее окружало. Вокруг этого центра стали формироваться галактики, в состав которых входят различные солнца с вращающимися вокруг них планетами и спутниками.

Как можно представить модель Вселенной и этапы ее развития?

Модель Вселенной можно представить в виде решетки, у которой точки пересечения прутьев это солнца. Эта воображаемая решетка постоянно вибрирует (как бы дышит) и увеличивается в размерах (развивается). Вселенная растет, расцветает и в определенный момент, когда достигает высшего этапа развития, начинает разрушаться.

Исчезают не отдельные планеты, а сразу солнечные системы целиком. Поскольку галактики связаны между собой определенным ритмом развития, при разрушении одной из них начинается распад и соседних галактик. Этот процесс очень медленный, для человеческого восприятия времени может пройти много миллиардов лет.

Но для вселенского разума время измеряется совершенно иначе. Когда большая часть галактик в космическом пространстве разрушается, поступает сигнал (или команда) и создается новая Вселенная, изначально более развитая, чем предыдущая. Таким образом, происходит эволюция Вселенных, и процесс этот бесконечен.

Каковы основные принципы управления Вселенной?

Все процессы, которые происходят в космическом пространстве и конкретно на каждой обитаемой планете подчиняются воле Высшего разума. Если сравнить Вселенную с организмом человека, то Высшие силы можно представить себе как мозг. Об этом же говорит и эзотерическое учение, утверждающее, что предшественником всего материального является мысль. Мозг дает команды и сигналы органам, т.е. галактикам, солнечным системам и планетам. Соответственно, органы выполняют эти команды.

Управление Высшими силами предполагает подчинение основным принципам мироздания – развитие жизни в служении добру, любви, радости, взаимоуважении. Если живущие на планете существа развиваются в ином направлении и допускают большое количество негативного излучения (зло, обиды, зависть, войны и т.д.), то следует наказание от Высших сил. Далее планета и солнечная система разрушаются. Вместо них возникает другая система, заменяющая разрушенную. Так Вселенная поддерживает баланс, как в отлаженной работе организма всего сущего.

Как возникает обитаемый мир?

Согласно земным религиям, сотворение мира является делом рук Бога. Однако, стоит лишь заменить основной религиозный термин на Высшие силы или Высший разум, и большинство вопросов и теологических разногласий отпадают сами собой. Возникновение и развитие Высшего разума можно сравнить с рождением и развитием ребенка. Путь к Его совершенствованию начался с осознания: «Я есть», «Я существую». В ходе развития Высшего разума возникают и исчезают миры.

Каждая вновь созданная Вселенная более совершенна изначально, с учетом ошибок прошлых созданий. После рождения нового мира, его обитателям предоставляется определенная свобода выбора в собственном развитии. Важно не нарушать основные принципы мироздания, т.е. развиваться и совершенствоваться, не застревать на низших ступенях духовного уровня, идти по жизни с любовью, радостью и благодарностью. Так же и Высший разум не стоит на месте, а продолжает улучшать сам себя.

Что такое гармония Вселенной?

Во Вселенной все устроено гармонично, поскольку создано по воле Высшего разума. Взаимодействие между галактиками и солнечными системами идеально настроено и любое нарушение этого устройства устраняется. Дисгармония может возникнуть на конкретной планете из-за ошибочных действий ее обитателей. Стремление к гармонии и совершенству это основная задача каждого человека или иного существа (если речь идет о других обитаемых мирах).

Если внимательно присмотреться к тому, как все устроено в природе, то станет понятно, что изначально мир был создан идеально. К примеру, когда происходит сбой в какой-либо системе организма человека, то другие органы берут на себя часть работы, чтобы восстановить изначальный порядок. То же самое происходит и в природе, и в целом на всей планете. Так же гармонично живет и Вселенная, вовремя разрушая и заменяя разбалансированные элементы.

Какова иерархическая лестница Вселенной?

Любая Вселенная имеет главенствующее начало и Исполнителя всего задуманного. Это Высший разум. Он осуществляет контроль всей системы Мироздания. У Высшей силы есть свои помощники, управляющие отдельными галактиками (своего рода верховные боги).

У каждой солнечной системы есть свой «управленец», а иерархия руководителей заканчивается у границы определенной планеты. Вся система идеально отлажена, информация по каждой точке Вселенной попадает к Высшему разуму.

Как выглядит общая модель правления и развития Мироздания?

На вершине всего происходящего стоит Высший разум, он же Творец всего сущего. От Него к каждой отдельной планете тянутся нити управления, по которым (как по проводам) информация скапливается, аккумулируется в центральной точке правления. Вселенная, как и любой механизм, может давать сбои. В отдельных узлах и точках галактик происходят остановки и поломки. Задача Творца заключается в том, чтобы своевременно их устранять либо чинить. Переход на более высокую ступень развития Вселенной не происходит, пока есть отстающие планеты.

То есть Творец будет пытаться исправить ситуацию в точках пространства, тормозящих общее развитие. Но если ситуация слишком запущена и обитатели планеты не хотят идти по пути развития, такой объект космоса просто уничтожается. Ее разрушение компенсируется созданием новой, соседней системой.

Люди и другие разумные существа являются своеобразными винтиками в общем механизме Мироздания. Жизнь дается как испытательный срок перед переходом на более высокий уровень бытия. Поэтому время, которое дается для земной жизни необходимо провести с максимальной пользой. В соответствии с едиными законами Вселенной.

Как описать общие законы бытия в Космосе?

Человеческий разум настроен на то, что любой закон это определенный запрет. Законы Мироздания или космического бытия имеют одно, но кардинальное отличие от привычных нам правил. В глобальной системе важным понятием является необходимость и полезность каких-либо действий, а не запрет ради запрета. Поступки и действия каждой конкретной мыслящей единицы оцениваются с точки зрения общей пользы. А главное, изначально оценка направлена на самого себя. Кратко общие правила гармоничного бытия можно свести к следующему:

  1. После разрушения всегда следует возрождение;
  2. Высшие силы идеально мудры, а потому всегда помогут достойным;
  3. Каждый день должен быть наполнен действиями;
  4. Помогать необходимо каждому, но без ущерба личным интересам;
  5. Если скопилась лишняя энергия, ее следует отдать или направить на совершение положительных поступков;
  6. Зло должно отсутствовать как на отдельной планете, так и во всем космическом пространстве;
  7. Смысл существования заключается не в накоплении материальных ценностей, а в получении опыта и знаний через жизнь, в постоянном саморазвитии;
  8. Страх смерти не должен сопровождать человеческую жизнь, поскольку возрождение неизбежно;
  9. Сотрудничество и взаимодействие между мыслящими единицами необходимо, так как они есть мощь и сила.

Космическая мораль и нравственность, что это?

Не стоит думать, что нормы морали и нравственности в общем космическом пространстве как-то отличаются от привычных правил земных жителей. Ведь все создано Им, а значит и основные нормы поведения – общие для всех.

  • Всегда помнить о том, что отношение окружающих к тебе – есть отражение твоего отношения к миру;
  • Любое дело должно быть сделано так, чтобы им можно было гордиться, а не стыдиться;
  • Начиная новое дело, помнить, что оно может быть последним в жизни, а значит делать его идеально;
  • Прислушиваться к мнению других, но всегда знать, что последнее слово за тобой;
  • Жить так, чтобы не было стыдно перед собой и не мешать жить другим.

Существует ли цикличность во всех процессах Мироздания?

Однозначно, да. Все, что когда-то происходило: ураганы, извержения вулканов, войны, эпидемии и т.д., будет повторяться вновь. Эти события можно с достаточно высокой вероятностью предугадать, в первую очередь для того, чтобы снизить негативное отражение на всей жизни планеты.

На межпланетарном уровне цикличность имеет место в образовании и распаде планетарных систем, их совершенствовании и развитии. Важно понимать, что циклы повторяются с учетом повышения уровня развития или деградации.

Соответственно, когда очередной этап пройден в совершенствовании, то представители данного поколения награждаются Им спокойной и достойной жизнью. А если этап был подвержен дегенерации или люди просто оставались на месте, то это поколение наказывается различными катастрофами.

Как обращаться и получать ответ от Высших сил?

Для начала, нужно понять, что услышан будет тот, кто искренне верит. А точнее, абсолютно убежден и не допускает сомнений в том, что создание всего – дело рук Высшего Творца. Необходимо жить в соответствии с Законами и общими Нормами, знать, что ваша совесть чиста. Обращаясь за помощью или советом к Высшим силам, будьте готовы к тому, чтобы видеть и воспринимать ответы и знаки, посылаемые свыше. Совершенно точно, что посещать церкви, мечети, синагоги и другие здания, в которых якобы живет бог, необходимости нет.

Идеальный разум, Верховный Творец слышит каждого, кто обращается к нему искренне и с верой в Него. И не забывайте о Благодарности. Благодарить Его нужно не только за «пряники», но и за «кнуты», ведь Он ничего не делает просто так, а только во благо вам и всем Его созданиям.

В чём заключается доказательство существования Бога?

Ответ: нет необходимости это доказывать. Стоит принимать это за аксиому.

Существование Бога проявляется в том, что есть Вселенная, Земля, воздух, небесное пространство. Не нужно искать доказательства, тратя на это время и усилия, а каждому делать свое дело.

Также интересно

Возраст и Характеристики, Структура и Состав, Космология, Большой Взрыв и Эволюция Мироздания, История Изучения до Наших Дней

13.07.2019

ВселеннаяВселенная

Вселенная — огромный и удивительный мир, полный тайн и загадок

Звездное небо издавна будоражило человеческое воображение. Наши далекие предки пытались понять, что за странные мерцающие точки висят у них над головами. Сколько их, откуда они взялись, влияют ли на земные события? Человек с глубокой древности пытался осмыслить, как устроена Вселенная, в которой он обитает.

О том, как древние люди представляли себе Вселенную, сегодня мы можем узнать разве что из сказок и легенд, дошедших до нас. Понадобились века и тысячелетия, чтобы возникла и окрепла наука о Вселенной, изучающая ее свойства и этапы развития, – космология. Краеугольными камнями данной дисциплины являются астрономия, математика и физика.

Сегодня мы гораздо лучше понимаем устройство Вселенной, но каждое полученное знание лишь рождает новые вопросы. Исследование атомных частиц в коллайдере, наблюдение за жизнью в дикой природе, высадку межпланетного зонда на астероиде также можно назвать изучением Вселенной, ибо данные объекты входят в ее состав. Человек тоже часть нашей прекрасной звездной Вселенной. Изучая Солнечную систему или далекие галактики, мы больше узнаем о самих себе.

Космология и объекты ее изучения

Само понятие Вселенная не имеет четкого определения в астрономии. В разные исторические периоды и у различных народов оно имело целый ряд синонимов, таких как «космос», «мир», «мироздание», «универсум» или «небесная сфера». Нередко, говоря о процессах, происходящих в глубинах Вселенной, применяют термин «макрокосмос», противоположностью которому является «микрокосмос» мира атомов и элементарных частиц.

Сверхновая Cas AСверхновая Cas A

Сверхновая Cas A в созвездии Кассиопеи помогла астрономам понять, что будет с планетами нашей системы после смерти Солнца

На нелегком пути познания космология нередко пересекается с философией и даже теологией, и в этом нет ничего удивительного. Наука об устройстве Вселенной пытается объяснить, когда и как возникло мироздание, разгадать тайну зарождения материи, понять место Земли и человечества в бесконечности космоса.

У современной космологии две наибольшие проблемы. Во-первых, объект ее изучения – Вселенная – уникален, что делает невозможным применение статистических схем и методов. Говоря кратко, мы не знаем о существовании других Вселенных, их свойствах, структуре, поэтому не можем сравнивать. Во-вторых, длительность астрономических процессов не дает возможность проводить прямые наблюдения.

Космология исходит из постулата, что свойства и строение Вселенной одинаковы для любого наблюдателя, за исключением редких космических феноменов. Это означает, что вещество во Вселенной распределено однородно, и она имеет одинаковые свойства во всех направлениях. Из этого следует, что физические законы, работающие в части Вселенной, вполне можно экстраполировать на всю Метагалактику.

Теоретическая космология разрабатывает новые модели, которые затем подтверждаются или опровергаются наблюдениями. Например, была доказана теория возникновения Вселенной в результате взрыва.

Возраст, размеры и состав

Масштабы Вселенной потрясают: они намного больше, чем мы могли представить двадцать или тридцать лет назад. Ученые уже обнаружили около пятисот миллиардов галактик, и число постоянно увеличивается. Каждая из них вращается вокруг собственной оси и удаляется от других на огромной скорости из-за расширения Вселенной.

«Умирающая» звезда«Умирающая» звезда

«Умирающая» звезда. Яркие участки — это потоки извергающегося газа

Квазар 3C 345 – один из самых ярких объектов во Вселенной – расположен от нас на удалении в пять миллиардов световых лет. Человеческий разум даже представить не может подобные расстояния. Космическому кораблю, движущемуся со световой скоростью, понадобится тысяча лет, чтобы облететь наш Млечный путь. До галактики Андромеды ему пришлось бы добираться 2,5 тыс. лет. А ведь это ближайшая соседка.

Говоря о размерах Вселенной, мы имеем ввиду ее видимую часть, называемую еще Метагалактикой. Чем больше результатов наблюдений мы получаем, тем дальше раздвигаются границы Вселенной. Причем происходит это одновременно по всем направлениям, что доказывает ее сферическую форму.

Наш мир появился около 13,8 млрд лет назад в результате Большого взрыва – события, породившего звезды, планеты, галактики и другие объекты. Эта цифра является реальным возрастом Вселенной.

Исходя из скорости света можно предположить, что ее размеры также составляют 13,8 млрд световых лет. Однако на самом деле они больше, ибо с момента рождения Вселенная непрерывно расширяется. Часть движется со сверхсветовой скоростью, из-за чего значительное количество объектов во Вселенной останутся невидимыми навеки. Данный предел называются сферой или горизонтом Хаббла.

«Столпы творения»«Столпы творения»

«Столпы творения» — одно из самых известных фото телескопа Хаббл. На самом деле, они представляют собой потоки газа и пыли в Туманности Орла

Диаметр Метагалактики составляет 93 млрд световых лет. Мы не знаем, что находится за пределами известной Вселенной. Может быть, существуют и более далекие объекты, недоступные сегодня для астрономических наблюдений. Значительная часть ученых верит в бесконечность Вселенной.

Возраст Вселенной неоднократно проверялся с использованием различных методик и научных инструментов. Последний раз его подтвердили с помощью орбитального телескопа «Планк». Имеющиеся данные полностью соответствуют современным моделям расширения Вселенной.

Из чего состоит Вселенная? Водород – самый распространенный элемент во Вселенной (75%), на втором месте находится гелий (23%), на остальные элементы приходятся ничтожные 2% от общего количества вещества. Средняя плотность — 10-29 г/см3, значительная часть которой приходится на так называемую темную энергию и материю. Зловещие названия не говорят об их ущербности, просто темная материя, в отличие от обычной, не взаимодействует с электромагнитным излучением. Соответственно, мы не можем наблюдать ее и делаем свои заключения только по косвенным признакам.

Исходя из вышеуказанной плотности, масса Вселенной составляет примерно 6*1051 кг. Следует понимать, что в эту цифру не входит темная масса.

Структура мироздания: от атомов до галактических скоплений

Космос – это не просто огромная пустота, в которой равномерно рассеяны звезды, планеты и галактики. Структура Вселенной довольно сложна и имеет несколько уровней организации, которые мы можем классифицировать в соответствии с масштабом объектов:

  1. Астрономические тела во Вселенной обычно группируются в системы. Звезды нередко образуют пары или входят в состав скоплений, которые содержат десятки, а то и сотни светил. В этом отношении наше Солнце довольно нетипично, так как оно не имеет «двойника»;
  2. Следующей ступенью организации являются галактики. Они могут быть спиральными, эллиптическими, линзовидными, неправильными. Ученые пока не до конца понимают, почему галактики обладают разной формой. На этом уровне мы обнаруживаем такие чудеса Вселенной, как черные дыры, темную материю, межзвездный газ, двойные звезды. Кроме звезд, в их состав входит пыль, газ, электромагнитное излучение. В известной Вселенной обнаружено несколько сотен миллиардов галактик. Они нередко сталкиваются друг с другом. Это непохоже на автомобильную аварию: звезды просто перемешиваются и меняют свои орбиты. Такие процессы занимают миллионы лет и приводят к образованию новых звездных скоплений;
  3. Несколько галактик образуют Местную группу. В нашу, кроме Млечного пути, входит Туманность Треугольника, Туманность Андромеды и еще 31 система. Скопления галактик – самые крупные из известных устойчивых структур Вселенной, их удерживает воедино гравитационная сила и еще какой-то фактор. Ученые подсчитали, что одного лишь притяжения явно недостаточно для поддержания стабильности этих объектов. Научного обоснования данного феномена пока не существует;
  4. Следующим уровнем структуры Вселенной являются сверхскопления галактик, каждая из которых содержит десятки, а то и сотни галактик и скоплений. Однако тяготение их уже не удерживает, поэтому они следуют за расширяющейся Вселенной;
  5. Последним уровнем организации мироздания являются ячейки или пузыри, стенки которых формируют сверхскопления галактик. Между ними находятся пустотные области, именуемые войдами. Эти структуры Вселенной имеют масштабы около 100 Мпк. На этом ярусе наиболее заметны процессы расширения Вселенной, также с ним связано реликтовое излучение – отголосок Большого взрыва.

Как возникло мироздание

Как появилась Вселенная? Что было до этого момента? Как она превратилась в то бесконечное пространство, известное нам сегодня? Было ли это случайностью или закономерным процессом?

После десятилетий дискуссий и яростных споров, физики и астрономы практически пришли к консенсусу относительно того, что мироздание появилось в результате взрыва колоссальной мощности. Он не только породил все вещество во Вселенной, но и определил физические законы, по которым существует известный нам космос. Это называется теория Большого взрыва.

Согласно этой гипотезе, когда-то вся материя каким-то непостижимым образом была собрана в одной небольшой точке с бесконечной температурой и плотностью. Она получила название сингулярности. 13,8 млрд лет назад точка взорвалась, образовав звезды, галактики, их скопления и другие астрономические тела Вселенной.

Почему и как это произошло – непонятно. Ученым приходится выносить за скобки множество вопросов, связанных с природой сингулярности и ее происхождением: законченной физической теории этого этапа истории Вселенной пока не существует. Следует отметить, что есть и другие теории возникновения Вселенной, но они имеют гораздо меньше приверженцев.

Термин «Большой взрыв» вошел в оборот в конце 40-х годов после публикации работ британского астронома Хойла. Сегодня данная модель досконально проработана – физики могут уверенно описать процессы, происходившие через доли секунды после этого события. Еще можно добавить, что данная теория позволила определить точный возраст Вселенной и описать основные этапы ее эволюции.

Главным доказательством теории Большого взрыва является наличие реликтового излучения. Оно было открыто в 1965 году. Данный феномен возник в результате рекомбинации атомов водорода. Реликтовое излучение можно назвать основным источником информации о том, как была устроена Вселенная миллиарды лет назад. Оно изотропно и равномерно заполняет космическое пространство.

Еще одним аргументом в пользу объективности данной модели является сам факт расширения Вселенной. Собственно говоря, экстраполируя этот процесс в прошлое, ученые и пришли к подобной концепции.

Есть в теории Большого взрыва и слабые места. Если бы мироздание образовалось мгновенно из одной небольшой точки, то должно было существовать неоднородное распределение вещества, чего мы не наблюдаем. Также данная модель не может объяснить, куда подевалась антиматерия, количество которой в «момент творения» не должно было уступать обычной барионной материи. Однако сейчас число античастиц во Вселенной мизерно. Но самый весомый недостаток данной теории – ее неспособность объяснить феномен Большого взрыва, он просто воспринимается как свершившийся факт. Мы не знаем, как выглядела Вселенная до момента сингулярности.

Большой взрывБольшой взрыв

Мы не знаем, как выглядел Большой взрыв и что было до него

Существуют и другие гипотезы зарождения и дальнейшей эволюции мироздания. Долгие годы была популярна модель стационарной Вселенной. Ряд ученых придерживались мнения, что в результате квантовых флуктуаций она возникла из вакуума. В их числе был и знаменитый Стивен Хокинг. Ли Смолин выдвинул теорию о том, что наша, как и другие Вселенные, образовались внутри черных дыр.

Предпринимались попытки улучшить существующую теорию Большого взрыва. Например, существует гипотеза о цикличности Вселенной, согласно которой, рождение из сингулярности – не более чем ее переход из одного состояния в другое. Правда, такой подход противоречит второму закону термодинамики.

Эволюция мироздания или что происходило после Большого взрыва

Теория Большого взрыва позволила ученым создать точную модель эволюции Мироздания. И сегодня мы неплохо знаем, какие процессы происходили в молодой Вселенной. Исключение составляет лишь самый ранний этап творения, который по-прежнему остается предметом яростных обсуждений и споров. Конечно, для достижения подобного результата одной теоретической основы было недостаточно, понадобились годы исследований Вселенной и тысячи экспериментов на ускорителях.

Эволюция ВселеннойЭволюция Вселенной

Эволюция Вселенной: от Большого взрыва до наших дней

Сегодня наука выделяет следующие этапы после Большого взрыва:

  1. Самый ранний из известных нам периодов называется Планковской эрой, он занимает отрезок от 0 до 10-43 секунд. В это время вся материя и энергия Вселенной была собрана в одной точке, а четыре основных взаимодействия были едины;
  2. Эпоха Великого объединения (с 10−43 по 10−36 секунд). Она характеризуется появлением кварков и разделением основных видов взаимодействий. Главным событием этого периода считается выделение гравитационной силы. В эту эру начали формироваться законы Вселенной. Сегодня мы имеем возможность для подробного описания физических процессов этой эпохи;
  3. Третий этап творения называется Эпохой инфляции (с 10−36 по 10−32). В это время началось стремительное движение Вселенной со скоростью, значительно превосходящей световую. Она становится больше, чем современная видимая Вселенная. Начинается охлаждение. В данный период окончательно разделяются фундаментальные силы мироздания;
  4. В период с 10−32 по 10−12 секунды появляются «экзотические» частицы типа бозона Хиггса, пространство заполнила кварк-глюонная плазма. Промежуток с 10−12 по 10−6 секунды называется эпохой кварков, с 10−6 по 1 секунду – адронов, в 1 секунду после Большого взрыва начинается эра лептонов;
  5. Фаза нуклеосинтеза. Она длилась примерно до третьей минуты от начала событий. В этот период во Вселенной из частиц возникают атомы гелия, дейтерия, водорода. Продолжается охлаждение, пространство становится прозрачным для фотонов;
  6. Через три минуты после Большого взрыва начинается эра Первичной рекомбинации. В этот период появилось реликтовое излучение, которое астрономы изучают до сих пор;
  7. Период 380 тыс. – 550 млн лет называют Темными веками. Вселенная в это время заполнена водородом, гелием, различными видами излучения. Источников света во Вселенной не было;
  8. Через 550 млн лет после Сотворения появляются звезды, галактики и прочие чудеса Вселенной. Первые звезды взрываются, освобождая материю для образования планетных систем. Данный период называется Эрой реионизации;
  9. В возрасте 800 млн лет во Вселенной начинают образовываться первые звездные системы с планетами. Наступает Эра вещества. В этот период формируется и наша родная планета.

Считается, что интерес для космологии представляет период с 0,01 секунды после акта творения и по наши дни. В этот временной отрезок сформировались первичные элементы, из них возникли звёзды, галактики, Солнечная система. Для космологов особо важным периодом считается эра рекомбинации, когда возникло реликтовое излучение, с помощью которого продолжается изучение известной Вселенной.

История космологии: древнейший период

Человек задумывался об устройстве окружающего мира с незапамятных времен. Наиболее ранние представления о строении и законах Вселенной можно обнаружить в сказках и легендах разных народов мира.

Считается, что регулярные астрономические наблюдения впервые стали практиковаться в Месопотамии. На этой территории последовательно проживали несколько развитых цивилизаций: шумеры, ассирийцы, персы. О том, как они представляли себе Вселенную, мы можем узнать из множества клинописных табличек, найденных на месте древних городов. Первые записи, касающиеся движения небесных тел, датируются VI тысячелетием до нашей эры.

Небесный диск из НебрыНебесный диск из Небры

Небесный диск из Небры. Он датируется XVII веком до н. э. Считается, что этот артефакт использовался для астрономических наблюдений

Из астрономических явлений шумеров больше всего интересовали циклы – смены времен года и фаз луны. От них зависел будущий урожай и здоровье домашних животных, следовательно, и выживание человеческой популяции. Из этого был сделан вывод о влиянии небесных тел на процессы, происходящие на Земле. Стало быть, изучая Вселенную, можно предсказывать свое будущее – так родилась астрология.

Шумеры изобрели шест для определения высоты Солнца, создали солнечный и лунный календарь, описали основные созвездия, открыли некоторые законы небесной механики.

Большое внимание движению космических объектов уделялось в религиозных практиках Древнего Египта. Жители долины Нила использовали геоцентрическую модель Вселенной, в которой Солнце вращалось вокруг Земли. До нас дошло множество древнеегипетских текстов, содержащих астрономические сведения.

Значительных высот наука о небе достигла в Древнем Китае. Здесь еще в III тысячелетии до н. э. появилась должность придворного астронома, а в XII веке до н. э. были открыты первые обсерватории. О солнечных затмениях, пролетах комет, метеоритных потоках и других интересных космических событиях древности мы в основном знаем из китайских летописей и хроник, которые скрупулёзно велись на протяжении столетий.

В большом почете астрономия была у эллинов. У них изучением этого вопроса занимались многочисленные философские школы, каждая из которых, как правило, имела собственную систему Вселенной. Греки первыми выдвинули предположение о шарообразной форме Земли и о вращении планеты вокруг собственной оси. Астроном Гиппарх ввел в оборот понятия апогея и перигея, эксцентриситета орбиты, разработал модели движения Солнца и Луны, высчитал периоды обращения планет. Большой вклад в развитие астрономии внес Птолемей, которого можно назвать творцом геоцентрической модели Солнечной системы.

Геоцентрическая модель ПтолемеяГеоцентрическая модель Птолемея

Геоцентрическая модель Птолемея. На протяжении столетий люди считали, что Земля — это центр Вселенной

Больших высот в изучении законов Вселенной достигла цивилизация майя. Это подтверждают результаты археологических раскопок. Жрецы умели предсказывать солнечные затмения, они создали совершенный календарь, построили многочисленные обсерватории. Астрономы майя наблюдали ближайшие планеты и смогли точно определить их периоды обращения.

Средние века и Новое время

После крушения Римской империи и распространения христианства, Европа почти на тысячелетие погрузилась в Темные века – развитие естественных наук, в том числе и астрономии, практически остановилось. Европейцы черпали информацию об устройстве и законах Вселенной из библейских текстов, немногочисленные астрономы твердо придерживались геоцентрической системы Птолемея, небывалой популярностью пользовалась астрология. Реальное изучение учеными Вселенной началось только в эпоху Возрождения.

В конце XV столетия кардиналом Николаем Кузанским была выдвинута смелая идея об универсальности мироздания и бесконечности глубин Вселенной. Уже к XVI веку стало понятно, что взгляды Птолемея ошибочны, и без принятия новой парадигмы дальнейшее развитие науки немыслимо. Поломать старую модель решился польский математик и астроном Николай Коперник, предложивший гелиоцентрическую модель Солнечной системы.

Гелиоцентрическая модель КоперникаГелиоцентрическая модель Коперника

Гелиоцентрическая модель, предложенная польским священником и астрономом Коперником

С современной точки зрения, его концепция была несовершенной. У Коперника движение планет обеспечивалось вращением небесных сфер, к которым они крепились. Сами орбиты имели круговую форму, а на границе мира находилась сфера с неподвижными звездами. Однако, поместив Солнце в центр системы, польский ученый, без сомнения, совершил настоящую революцию. Историю астрономии можно разделить на две большие части: древнейший период и изучение Вселенной от Коперника до наших дней.

В 1608 году итальянский ученый Галилей изобрел первый в мире телескоп, который дал огромный толчок развитию наблюдательной астрономии. Теперь ученые могли созерцать глубины Вселенной. Оказалось, что Млечный путь состоит из миллиардов звезд, Солнце имеет пятна, Луна – горы, а вокруг Юпитера вращаются спутники. Появление телескопа вызвало настоящий бум оптических наблюдений за чудесами Вселенной.

В середине XVI века датский ученый Тихо Браге первым начал регулярные астрономические наблюдения. Он доказал космическое происхождение комет, опровергнув тем самым идею Коперника о небесных сферах. В начале XVII столетия Иоганн Кеплер разгадал тайны движения планет, сформулировав свои знаменитые законы. В это же время были открыты туманности Андромеды и Ориона, кольца Сатурна, составлена первая карта лунной поверхности.

В 1687 году Исааком Ньютоном был сформулирован закон всемирного тяготения, объясняющий взаимодействие всех составляющих Вселенной. Он позволил увидеть скрытый смысл законов Кеплера, которые, по сути, были выведены эмпирическим путем. Принципы, открытые Ньютоном, позволили ученым по-новому взглянуть на пространство Вселенной.

XVIII столетие стало периодом бурного развития астрономии, значительно расширившим границы известной Вселенной. В 1785 году Кант выдвинул блестящую идею, что Млечный путь – это огромное звездное скопление, собранное воедино гравитацией.

В это время на «карте Вселенной» появлялись новые небесные тела, совершенствовались телескопы.

В 1785 году английский астроном Гершель на основе законов электромагнетизма и ньютоновской механики попытался создать модель Вселенной и определить ее форму. Однако он потерпел неудачу.

В XIX веке инструменты ученых стали более точными, появилась фотографическая астрономия. Спектральный анализ, появившийся в середине столетия, привел к настоящей революции в наблюдательной астрономии – теперь темой для исследований стал химический состав объектов. Был открыт пояс астероидов, измерена скорость света.

Эпоха прорывов или новейшее время

Двадцатое столетия стало эпохой настоящих прорывов в астрономии и космологии. В начале века Эйнштейн явил миру свою теорию относительности, которая совершила настоящий переворот в наших представлениях о мироздании и позволила по-новому взглянуть на свойства Вселенной. В 1929 году Эдвин Хаббл обнаружил, что наша Вселенная расширяется. В 1931 году Жорж Леметр выдвинул идею о ее образовании из одной крошечной точки. По сути, это было начало теории Большого взрыва. В 1965 году открыли реликтовое излучение, подтвердившее эту гипотезу.

В 1957 году на орбиту был отправлен первый искусственный спутник, после чего началась космическая эра. Теперь астрономы могли не только наблюдать за небесными телами в телескопы, но и исследовать их вблизи с помощью межпланетных станций и спускаемых зондов. Мы даже смогли высадиться на поверхности Луны.

90-е годы можно назвать «периодом темной материи». Ее открытие объяснило ускорение расширения Вселенной. В это время в эксплуатацию были введены новые телескопы, позволившие нам раздвинуть пределы известной Вселенной.

Орбитальный телескоп ХабблаОрбитальный телескоп Хаббла

Орбитальный телескоп Хаббла. Он назван в честь американского астронома Эдвина Хаббла, открывшего расширение Вселенной

В 2016 году были открыты гравитационные волны, что, вероятно, положит начало новому разделу астрономии.

За последние столетия мы значительно расширили границы наших познаний о Вселенной. Однако, на самом деле, люди лишь приоткрыли дверь и заглянули в огромный и удивительный мир, полный тайн и потрясающих чудес.

Если у вас возникли вопросы — оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

С друзьями поделились:

Вселенная. Строение Вселенной | MERKATOR

Вселенная — это весь материальный мир, разнообразный по формам, которые приобретает материя и энергия.

Вселенная состоит из пустот (войдов) и галактических нитей, которые можно разбить на сверхскопления, скопления, группы галактик, а затем и на галактики. Галактики состоят из звезд, звездных скоплений, межзвездного газа, пыли и темной материи. Звезды или группы звезд образуют звездные системы. В их состав могут входить незвездные объекты (планеты, спутники, астероиды, метеороиды, кометы и космическая пыль), которые образуют планетные системы.

Вселенная в пределах 500 млн световых лет, показывает ближайшие галактические стены и сверхскопления

(Авторы: Richard Powell, Antropia; Источник: Wikipedia)

Войды (от англ. void — пустота) — участки космического пространства, в которых концентрация галактик в десятки раз меньше средней. Они окаймлены скоплениями и сверхскоплениями галактик. Размеры войдов составляют около 10-30 мегапарсек. Большие войды (англ. supervoids) могут достигать в размерах 150 мегапарсек и вероятно охватывают около 50% объема Вселенной.

Галактические нити (англ. galaxy filament) — крупнейшие из известных космических структур Вселенной в форме нитей из галактик со средней длиной 50-80 мегапарсек (163-260 миллионов световых лет), лежащие между большими пустотами (войдами). Нити могут формировать «большие стены» — относительно плоские структуры скоплений и сверхскоплений.

Сверхскопления галактик (англ. supercluster) — физически связанные сплющенные группировки скоплений галактик и групп галактик. Группы и скопления галактик образуют вытянутые волокна (цепочки). Протяженность цепочек 10-100 мегапарсек, толщина около 1 мегапарсек. Богатые скопления (то есть такие, которые состоят из большого количества членов) расположены на концах цепочек или в местах их разветвления. Сверхскопление содержит сеть волокон (или одно волокно) и одно или несколько богатых скоплений. Соседние сверхскопления соединены цепочками. Между цепочками сверхскоплений расположены войды.

Скопления галактик (англ. galaxy cluster) — гравитационно связанные системы галактик, размеры которых могут достигать 108 световых лет. Массы скоплений варьируются от 1013 до 1015 масс Солнца. Выделяют три вида скоплений: регулярные, иррегулярные, промежуточные. Регулярные (или правильные) скопления имеют округлую форму в проекции на небесную сферу, их характеризует значительный рост концентрации к центру. Иррегулярные (или неправильные) скопления характеризуются неправильными внешними контурами и уменьшением концентрации к центру.

Группы галактик (англ. galaxy group) — пространственно отделены и гравитационно связанные объединения галактик, которые насчитывают до ста членов. Объединения с количеством членов более ста обычно называют скоплениями галактик, хотя четко определенной границы между ними нет.

Галактика (англ. galaxy) — гравитационно связанная система из звезд, звездных скоплений, межзвездного газа, пыли и темной материи. Галактики (за исключением нашей) — чрезвычайно далекие астрономические объекты. В видимой части Вселенной есть около двух триллионов галактик. В пространстве они распределены неравномерно. Галактики отличаются большим разнообразием. Среди них можно выделить: шаровидные эллиптические галактики, дисковые спиральные галактики, галактики с перемычкой (баром), карликовые, неправильные и т.д. Масса галактик варьируется от 107 до 1012 масс Солнца. Диаметр галактик — от 5 до 250 килопарсек (16-800 тысяч световых лет). Самая большая известная галактика IC 1101 имеет диаметр более 600 килопарсек.

Спиральная галактика NGC 4414 (Автор: The Hubble Heritage Team; Источник: Wikipedia)

Звезда (англ. star) — огромное раскаленное, самосветящееся небесное тело, в недрах которого эффективно происходят (или происходили) термоядерные реакции. Форма звезд близка к сферической. Есть как одиночные, так и кратные звезды (двойные, тройные и т.д.). В зависимости от температуры поверхности звезды бывают голубыми, белыми, желтыми и красными. Массы звезд изменяются от 0,05 до 80 масс Солнца.

Звездное скопление (англ. star clusters) — гравитационно связанная группа звёзд, которая имеет общее происхождение и подвижная в гравитационном поле галактики как единое целое.

Звездная система (англ. star system) — это система, состоящая из звезды или группы звезд, и, возможно, планетных систем из меньших тел, объединенных гравитацией.

Планетная система (англ. planetary system) — незвездные объекты, вращающиеся вокруг материнской звезды. Это могут быть планеты, спутники, астероиды, метеороиды, кометы и космическая пыль.

Планета (англ. planet) — это небесное тело, вращающееся по орбите вокруг звезды или ее остатков, достаточно массивное, чтобы стать округлым под действием собственной гравитации, но недостаточно массивное для начала термоядерной реакции, и которое сумело очистить окрестности своей орбиты.

Спутник (англ. satellite) — небесное тело, вращающееся по определенной траектории (орбите) вокруг другого объекта в космическом пространстве под действием гравитации.

Астероид (англ. asteroid) — твердое небесное тело диаметром от 1 до 1000 км, которое движется по орбите в звездной системе.

Метеороид (англ. meteoroid) — небольшое твердое небесное тело, движущееся в межпланетном пространстве.

Комета (англ. comet) — небольшое тело звездных систем, которое вращается вокруг звезды и имеет так называемую кому (атмосферу) и/или хвост. Кома и хвост кометы — это последствия испарения поверхности ядра кометы под действием солнечного излучения. Ядро состоит из льда и мелких пористых каменистых частиц. Ядра имеют диаметры от нескольких сотен метров до десятков километров.

Космическая пыль (англ. cosmic dust) — частицы в космосе размером от нескольких молекул до 0,1 мм.

Межзвездный газ (англ. interstellar gas) — газ, заполняющий пространство между звездами. Он прозрачен в видимом свете. Средняя концентрация атомов межзвездного газа составляет менее 1 атома в 1 см³.

Темная материя (англ. dark matter) — один из компонентов Вселенной, существование которого обнаружено недавно только по гравитационным воздействиям на видимую материю и на фоновое излучение, поскольку она не излучает и не рассеивает электромагнитное излучение, а также не участвует в сильном (ядерном) взаимодействии.


Источники:

1. Structure of the Universe — https://www.universetoday.com/37360/structure-of-the-universe/
2. Текстовое содержимое доступно в соответствии с лицензией Creative Commons Attributions-ShareAlike (CC-BY-SA), http://creativecommons.org/licenses/by-sa/3.0/. Источник: Википедия: https://uk.wikipedia.org/wiki/%D0%93%D0%B0%D0%BB%D0%B0%D0%BA%D1%82%D0%B8%D0%BA%D0%B0. Авторы: https://uk.wikipedia.org/w/index.php?title=%D0%93%D0%B0%D0%BB%D0%B0%D0%BA%D1%82%D0%B8%D0%BA%D0%B0&action=history
3. Текстовое содержимое доступно в соответствии с лицензией Creative Commons Attributions-ShareAlike (CC-BY-SA), http://creativecommons.org/licenses/by-sa/3.0/. Источник: Википедия: https://uk.wikipedia.org/wiki/%D0%92%D0%BE%D0%B9%D0%B4. Авторы: https://uk.wikipedia.org/w/index.php?title=%D0%92%D0%BE%D0%B9%D0%B4&action=history 
4. Текстовое содержимое доступно в соответствии с лицензией Creative Commons Attributions-ShareAlike (CC-BY-SA), http://creativecommons.org/licenses/by-sa/3.0/. Источник: Википедия: https://uk.wikipedia.org/wiki/%D0%92%D1%81%D0%B5%D1%81%D0%B2%D1%96%D1%82. Авторы: https://uk.wikipedia.org/w/index.php?title=%D0%92%D1%81%D0%B5%D1%81%D0%B2%D1%96%D1%82&action=history
5. Текстовое содержимое доступно в соответствии с лицензией Creative Commons Attributions-ShareAlike (CC-BY-SA), http://creativecommons.org/licenses/by-sa/3.0/. Источник: Википедия: https://uk.wikipedia.org/wiki/%D0%93%D0%B0%D0%BB%D0%B0%D0%BA%D1%82%D0%B8%D1%87%D0%BD%D0%B0_%D0%BD%D0%B8%D1%82%D0%BA%D0%B0. Авторы: https://uk.wikipedia.org/w/index.php?title=%D0%93%D0%B0%D0%BB%D0%B0%D0%BA%D1%82%D0%B8%D1%87%D0%BD%D0%B0_%D0%BD%D0%B8%D1%82%D0%BA%D0%B0&action=history 
6. Текстовое содержимое доступно в соответствии с лицензией Creative Commons Attributions-ShareAlike (CC-BY-SA), http://creativecommons.org/licenses/by-sa/3.0/. Источник: Википедия: https://uk.wikipedia.org/wiki/%D0%9D%D0%B0%D0%B4%D1%81%D0%BA%D1%83%D0%BF%D1%87%D0%B5%D0%BD%D0%BD%D1%8F_%D0%B3%D0%B0%D0%BB%D0%B0%D0%BA%D1%82%D0%B8%D0%BA. Авторы: https://uk.wikipedia.org/w/index.php?title=%D0%9D%D0%B0%D0%B4%D1%81%D0%BA%D1%83%D0%BF%D1%87%D0%B5%D0%BD%D0%BD%D1%8F_%D0%B3%D0%B0%D0%BB%D0%B0%D0%BA%D1%82%D0%B8%D0%BA&action=history 
7. Текстовое содержимое доступно в соответствии с лицензией Creative Commons Attributions-ShareAlike (CC-BY-SA), http://creativecommons.org/licenses/by-sa/3.0/. Источник: Википедия: https://uk.wikipedia.org/wiki/%D0%A1%D0%BA%D1%83%D0%BF%D1%87%D0%B5%D0%BD%D0%BD%D1%8F_%D0%B3%D0%B0%D0%BB%D0%B0%D0%BA%D1%82%D0%B8%D0%BA. Авторы: https://uk.wikipedia.org/w/index.php?title=%D0%A1%D0%BA%D1%83%D0%BF%D1%87%D0%B5%D0%BD%D0%BD%D1%8F_%D0%B3%D0%B0%D0%BB%D0%B0%D0%BA%D1%82%D0%B8%D0%BA&action=history 
8. Текстовое содержимое доступно в соответствии с лицензией Creative Commons Attributions-ShareAlike (CC-BY-SA), http://creativecommons.org/licenses/by-sa/3.0/. Источник: Википедия: https://uk.wikipedia.org/wiki/%D0%93%D1%80%D1%83%D0%BF%D0%B0_%D0%B3%D0%B0%D0%BB%D0%B0%D0%BA%D1%82%D0%B8%D0%BA. Авторы: https://uk.wikipedia.org/w/index.php?title=%D0%93%D1%80%D1%83%D0%BF%D0%B0_%D0%B3%D0%B0%D0%BB%D0%B0%D0%BA%D1%82%D0%B8%D0%BA&action=history 
9. Текстовое содержимое доступно в соответствии с лицензией Creative Commons Attributions-ShareAlike (CC-BY-SA), http://creativecommons.org/licenses/by-sa/3.0/. Источник: Википедия: https://uk.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BC%D0%BD%D0%B0_%D0%BC%D0%B0%D1%82%D0%B5%D1%80%D1%96%D1%8F. Авторы: https://uk.wikipedia.org/w/index.php?title=%D0%A2%D0%B5%D0%BC%D0%BD%D0%B0_%D0%BC%D0%B0%D1%82%D0%B5%D1%80%D1%96%D1%8F&action=history
10. Текстовое содержимое доступно в соответствии с лицензией Creative Commons Attributions-ShareAlike (CC-BY-SA), http://creativecommons.org/licenses/by-sa/3.0/. Источник: Википедия: https://uk.wikipedia.org/wiki/%D0%97%D0%BE%D1%80%D1%96. Авторы: https://uk.wikipedia.org/w/index.php?title=%D0%97%D0%BE%D1%80%D1%8F&action=history 
11. Текстовое содержимое доступно в соответствии с лицензией Creative Commons Attributions-ShareAlike (CC-BY-SA), http://creativecommons.org/licenses/by-sa/3.0/. Источник: Википедия: https://uk.wikipedia.org/wiki/%D0%97%D0%BE%D1%80%D1%8F%D0%BD%D0%B5_%D1%81%D0%BA%D1%83%D0%BF%D1%87%D0%B5%D0%BD%D0%BD%D1%8F. Авторы: https://uk.wikipedia.org/w/index.php?title=%D0%97%D0%BE%D1%80%D1%8F%D0%BD%D0%B5_%D1%81%D0%BA%D1%83%D0%BF%D1%87%D0%B5%D0%BD%D0%BD%D1%8F&action=history 
12. Текстовое содержимое доступно в соответствии с лицензией Creative Commons Attributions-ShareAlike (CC-BY-SA), http://creativecommons.org/licenses/by-sa/3.0/. Источник: Википедия: https://uk.wikipedia.org/wiki/%D0%97%D0%BE%D1%80%D1%8F%D0%BD%D0%B0_%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0. Авторы: https://uk.wikipedia.org/w/index.php?title=%D0%97%D0%BE%D1%80%D1%8F%D0%BD%D0%B0_%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0&action=history 
13. Текстовое содержимое доступно в соответствии с лицензией Creative Commons Attributions-ShareAlike (CC-BY-SA), http://creativecommons.org/licenses/by-sa/3.0/. Источник: Википедия: https://uk.wikipedia.org/wiki/%D0%9F%D0%BB%D0%B0%D0%BD%D0%B5%D1%82%D0%BD%D0%B0_%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0. Авторы: https://uk.wikipedia.org/w/index.php?title=%D0%9F%D0%BB%D0%B0%D0%BD%D0%B5%D1%82%D0%BD%D0%B0_%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0&action=history 
14. Текстовое содержимое доступно в соответствии с лицензией Creative Commons Attributions-ShareAlike (CC-BY-SA), http://creativecommons.org/licenses/by-sa/3.0/. Источник: Википедия: https://uk.wikipedia.org/wiki/%D0%9F%D0%BB%D0%B0%D0%BD%D0%B5%D1%82%D0%B0. Авторы: https://uk.wikipedia.org/w/index.php?title=%D0%9F%D0%BB%D0%B0%D0%BD%D0%B5%D1%82%D0%B0&action=history 
15. Текстовое содержимое доступно в соответствии с лицензией Creative Commons Attributions-ShareAlike (CC-BY-SA), http://creativecommons.org/licenses/by-sa/3.0/. Источник: Википедия: https://uk.wikipedia.org/wiki/%D0%A1%D1%83%D0%BF%D1%83%D1%82%D0%BD%D0%B8%D0%BA. Авторы: https://uk.wikipedia.org/w/index.php?title=%D0%A1%D1%83%D0%BF%D1%83%D1%82%D0%BD%D0%B8%D0%BA&action=history 
16. Текстовое содержимое доступно в соответствии с лицензией Creative Commons Attributions-ShareAlike (CC-BY-SA), http://creativecommons.org/licenses/by-sa/3.0/. Источник: Википедия: https://uk.wikipedia.org/wiki/%D0%90%D1%81%D1%82%D0%B5%D1%80%D0%BE%D1%97%D0%B4. Авторы: https://uk.wikipedia.org/w/index.php?title=%D0%90%D1%81%D1%82%D0%B5%D1%80%D0%BE%D1%97%D0%B4&action=history 
17. Текстовое содержимое доступно в соответствии с лицензией Creative Commons Attributions-ShareAlike (CC-BY-SA), http://creativecommons.org/licenses/by-sa/3.0/. Источник: Википедия: https://uk.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D0%B5%D0%BE%D1%80%D0%BE%D1%97%D0%B4. Авторы: https://uk.wikipedia.org/w/index.php?title=%D0%9C%D0%B5%D1%82%D0%B5%D0%BE%D1%80%D0%BE%D1%97%D0%B4&action=history 
18. Текстовое содержимое доступно в соответствии с лицензией Creative Commons Attributions-ShareAlike (CC-BY-SA), http://creativecommons.org/licenses/by-sa/3.0/. Источник: Википедия: https://uk.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BC%D0%B5%D1%82%D0%B0. Авторы: https://uk.wikipedia.org/w/index.php?title=%D0%9A%D0%BE%D0%BC%D0%B5%D1%82%D0%B0&action=history 
19. Текстовое содержимое доступно в соответствии с лицензией Creative Commons Attributions-ShareAlike (CC-BY-SA), http://creativecommons.org/licenses/by-sa/3.0/. Источник: Википедия: https://uk.wikipedia.org/wiki/%D0%9A%D0%BE%D1%81%D0%BC%D1%96%D1%87%D0%BD%D0%B8%D0%B9_%D0%BF%D0%B8%D0%BB. Авторы: https://uk.wikipedia.org/w/index.php?title=%D0%9A%D0%BE%D1%81%D0%BC%D1%96%D1%87%D0%BD%D0%B8%D0%B9_%D0%BF%D0%B8%D0%BB&action=history 
20. Текстовое содержимое доступно в соответствии с лицензией Creative Commons Attributions-ShareAlike (CC-BY-SA), http://creativecommons.org/licenses/by-sa/3.0/. Источник: Википедия: https://uk.wikipedia.org/wiki/%D0%9C%D1%96%D0%B6%D0%B7%D0%BE%D1%80%D1%8F%D0%BD%D0%B8%D0%B9_%D0%B3%D0%B0%D0%B7. Авторы: https://uk.wikipedia.org/w/index.php?title=%D0%9C%D1%96%D0%B6%D0%B7%D0%BE%D1%80%D1%8F%D0%BD%D0%B8%D0%B9_%D0%B3%D0%B0%D0%B7&action=history 



ПОХОЖИЕ МАТЕРИАЛЫ:

Состав Вселенной | ESA / Хаббл

Химический состав Вселенной и физическая природа составляющих ее веществ — темы, которые занимали ученых на протяжении веков. Благодаря своему привилегированному положению над атмосферой Земли Хаббл смог внести значительный вклад в эту область исследований.

По всей Вселенной звезды работают как гигантские предприятия по переработке легких химических элементов и превращают их в более тяжелые. Первоначальный, так называемый изначальный состав Вселенной изучается столь детально, потому что это один из ключей к нашему пониманию процессов в самой ранней Вселенной.

Гелий в ранней Вселенной

Вскоре после того, как Первая обслуживающая миссия успешно исправила сферическую аберрацию в зеркале Хаббла, группа под руководством европейского астронома Питера Якобсена исследовала природу газообразного вещества, заполняющего огромный объем межгалактического пространства. Наблюдая за ультрафиолетовым светом далекого квазара, который в противном случае был бы поглощен атмосферой Земли, они обнаружили долгожданный признак гелия в ранней Вселенной.Это было важным подтверждением теории Большого взрыва. Это также подтвердило ожидания ученых, что в очень ранней Вселенной материя, еще не заключенная в звездах и галактиках, была почти полностью ионизирована (атомы были лишены своих электронов). Это был важный шаг вперед для космологии.

Маяки Квазар

Спектрограф Cosmic Origins предназначен для изучения состава и крупномасштабной структуры Вселенной

Это исследование гелия в ранней Вселенной — один из многих способов использования Хабблом далеких квазаров в качестве маяков.Когда свет от квазаров проходит через межгалактическое вещество, световой сигнал изменяется таким образом, чтобы выявить состав газа.

Результаты заполнили важные части загадки общего состава Вселенной сейчас и в прошлом.

Во время сервисной миссии в 2009 году космонавты установили новый прибор, предназначенный для изучения этой области. Спектрограф Cosmic Origins разработан для разделения ультрафиолетового света от далеких квазаров на составляющие его длины волн и изучения того, как промежуточное вещество поглощает одни длины волн больше, чем другие.Это показывает отпечатки пальцев различных элементов, которые больше говорят нам об их изобилии в разных местах Вселенной.

Темная материя

Сегодня астрономы считают, что около четверти массы-энергии Вселенной состоит из темной материи. Это вещество сильно отличается от обычной материи, из которой состоят атомы и привычного мира вокруг нас. Хаббл сыграл важную роль в работе, направленной на установление количества темной материи во Вселенной, а также на то, где она находится и как ведет себя.

Загадка того, из чего состоит призрачная темная материя, все еще далека от разгадки, но невероятно точные наблюдения Хаббла гравитационных линз стали ступеньками для будущей работы в этой области.

Темная материя взаимодействует только с гравитацией, что означает, что она не отражает, не испускает и не препятствует свету (или вообще любому другому типу электромагнитного излучения). Из-за этого его нельзя наблюдать напрямую. Однако исследование Хаббла того, как скопления галактик искривляют проходящий через них свет, позволяет астрономам определить, где находится скрытая масса.Это означает, что они могут составлять карты того, где находится темная материя в кластере.

Этот композит Хаббла / Чандры / VLT показывает, как темная материя (синим цветом) и горячий газ (розовым цветом) расположены далеко друг от друга во время столкновения скоплений.

Одним из больших достижений Хаббла в этой области является открытие того, как ведет себя темная материя при столкновении скоплений друг с другом.Исследования ряда этих скоплений показали, что расположение темной материи (определенное на основе гравитационного линзирования с телескопом Хаббла) не соответствует распределению горячего газа (обнаруженному в рентгеновских лучах обсерваториями, такими как XMM-Newton ЕКА или Chandra НАСА). ). Это убедительно подтверждает теории о темной материи: мы ожидаем, что горячие газы будут замедляться по мере столкновения друг с другом и увеличения давления. Темная материя, с другой стороны, не должна испытывать трения или давления, поэтому мы ожидаем, что она пройдет через столкновение относительно беспрепятственно.Наблюдения Хаббла и Чандры действительно подтвердили, что это так.

В 2018 году астрономы использовали чувствительность телескопа Хаббла для изучения света внутри скоплений в поисках темной материи. Внутрикластерный свет — это побочный продукт взаимодействия между галактиками. В ходе этих взаимодействий отдельные звезды отделяются от своих галактик и свободно плавают в скоплении. Освободившись от своих галактик, они оказываются там, где находится большая часть массы скопления, в основном темной материи.И темная материя, и эти изолированные звезды, которые образуют свет внутри скопления, действуют как бесстолкновительные компоненты. Они следуют за гравитационным потенциалом самого кластера. Исследование показало, что свет внутри скопления совмещен с темной материей, отслеживая ее распределение более точно, чем любой другой метод, основанный на используемых до сих пор световых индикаторах.

Трехмерная карта распределения темной материи во Вселенной

В 2007 году международная группа астрономов использовала Хаббл для создания первой трехмерной карты крупномасштабного распределения темной материи во Вселенной.Он был построен путем измерения форм полумиллиона галактик, наблюдаемых Хабблом. Свет этих галактик распространялся — пока не достиг Хаббла — по пути, прерванному скоплениями темной материи, которые искажали внешний вид галактик. Астрономы использовали наблюдаемое искажение форм галактик, чтобы восстановить их первоначальную форму и, следовательно, также могли рассчитать распределение темной материи между ними.

Эта карта показала, что нормальная материя, в основном в форме галактик, накапливается вдоль самых плотных скоплений темной материи.Созданная карта простирается на полпути к началу Вселенной и показывает, как темная материя становилась все более и более комковатой, когда она схлопывалась под действием силы тяжести. Отображение распределения темной материи до еще меньших масштабов является фундаментальным для нашего понимания того, как галактики росли и группировались в течение миллиардов лет. Отслеживание роста кластеров в темной материи может в конечном итоге также пролить свет на темную энергию.

Темная энергия

Еще более интригующим, чем темная материя, является темная энергия.Исследования Хаббла скорости расширения Вселенной показали, что расширение действительно ускоряется. Астрономы объяснили это с помощью теории темной энергии, которая все быстрее раздвигает Вселенную против силы тяжести.

Согласно знаменитому уравнению Эйнштейна E = mc 2 , энергия и масса взаимозаменяемы. Исследования скорости расширения космоса показывают, что темная энергия на сегодняшний день составляет самую большую часть массы и энергии Вселенной, намного превышая как обычную, так и темную материю: кажется, что темная энергия составляет почти 70% известной Вселенной.

Хотя астрономы смогли сделать шаги на пути к пониманию того, как работает темная энергия и что она делает, ее истинная природа все еще остается загадкой.

На странице «Измерение возраста и размера Вселенной» также есть информация о темной энергии и о том, как она связана с расширением космоса.

Похожие видео и изображения

Пресс-релизы по теме

.

Характеристики нашей Вселенной Рона Куртуса

SfC Home> Физические науки> Астрономия>

, Рон Куртус (редакция 30 ноября 2011 г.)

Вселенная состоит из всех известных нам звезд и галактик. Это все, что есть в небе и необъятно, за гранью воображения. На самом деле, трудно осознать огромные расстояния и большое количество людей во Вселенной. Наше место и существование ничтожны по сравнению со всем остальным.Теория состоит в том, что Вселенная началась с Большого взрыва. Есть также теории, что существуют другие вселенные, параллельные нашей.

Вопросы, которые могут у вас возникнуть:

  • Насколько велика Вселенная?
  • Как возникла Вселенная?
  • Какие еще есть вселенные?

Этот урок ответит на эти вопросы.



Размер Вселенной

Вселенная велика по размеру и состоит из миллиардов галактик, которые, в свою очередь, состоят из миллиардов звезд.

Физический размер

Размеры Вселенной огромны. По оценкам, Вселенная имеет размер 156 миллиардов (156 000 000 000) световых лет в поперечнике. Поскольку свет распространяется со скоростью примерно 299 800 километров в секунду или 186 000 миль в секунду, вы можете видеть, что расстояние очень велико.

Количество галактик и звезд

Вселенная состоит примерно из 100 миллиардов галактик. Каждая галактика состоит из от 10 миллионов до 1 триллиона (1 000 000 000 000) звезд, вращающихся вокруг центральной области.

Галактика, состоящая из миллиардов звезд

Каждая звезда в галактике — это Солнце, подобное нашему Солнцу. Некоторые звезды намного больше нашего Солнца, а другие меньше.

Наша галактика

Наше Солнце, Земля и планеты в нашей Солнечной системе являются частью галактики Млечный Путь. Он назван так потому, что в ясную ночь многие звезды в нашей галактике выглядят почти как молоко, разлитое по небу.

Наш вид на остальную часть галактики Млечный Путь

Поскольку мы находимся в галактике Млечный Путь, мы рассматриваем ее как угол.

Начало Вселенной

Основная теория возникновения Вселенной — это теория «Большого взрыва». Это говорит о том, что около 13,7 миллиарда лет назад (13 700 000 000 лет) вся материя была сжата до размера, по некоторым оценкам, с мяч для гольфа. Затем она взорвалась в результате «большого взрыва» и распространилась, пока не достигла огромных размеров современной Вселенной.

Пока вещество расширялось, оно начало сгущаться в все большие и большие массы.Турбулентность взрыва привела к вращению галактик.

Измерения показывают, что Вселенная все еще расширяется. Путем интерполяции направлений и скоростей назад астрономы оценили время начала взрыва. Конечно, такие измерения очень неточны. По этой теории ведутся споры о том, будет ли Вселенная продолжать расширяться или начнет сжиматься.

Другие вселенные

Есть теории, что могут быть другие вселенные, о которых мы не знаем.Одна теория гласит, что существуют параллельные вселенные, похожие на нашу Вселенную. Поскольку мы не знаем, насколько велика наша Вселенная, за пределами нашей Вселенной могут быть другие вселенные.

Другая теория состоит в том, что черная дыра может быть отправной точкой Большого взрыва другой вселенной. Все это абстрактные мысли, которые нельзя доказать.

( См. «Являются ли атомы крошечными солнечными системами?», Чтобы узнать о другой идее. )

Просто представления о том, что находится «там» и где существует вселенная, довольно загадочны.

Сводка

Вселенная чрезвычайно велика и состоит из миллионов галактик и миллиардов звезд. Мы находимся в галактике Млечный Путь. Основная теория возникновения Вселенной называется Теорией Большого взрыва.


Помогите всем в вашей вселенной


Ресурсы и ссылки

Полномочия Рона Куртуса

Сайтов

Space Weather — Новости о среде Земля-Солнце

Астрономические ресурсы

Книги

Лучшие книги по Вселенной


Вопросы и комментарии

Есть ли у вас какие-либо вопросы, комментарии или мнения по этой теме? Если это так, отправьте свой отзыв по электронной почте.Я постараюсь вернуться к вам как можно скорее.


Поделиться страницей

Нажмите кнопку, чтобы добавить эту страницу в закладки или поделиться ею через Twitter, Facebook, электронную почту или другие службы:


Студенты и исследователи

Веб-адрес этой страницы:
www.school-for-champions.com/astronomy/
Universe.htm

Пожалуйста, включите его в качестве ссылки на свой веб-сайт или в качестве ссылки в своем отчете, документе или диссертации.

Авторские права © Ограничения


Где ты сейчас?

Школа чемпионов

Астрономия

Характеристики Вселенной

.

Наша расширяющаяся Вселенная: возраст, история и другие факты

Вселенная родилась в результате Большого взрыва в виде невообразимо горячей и плотной точки. Когда возраст Вселенной составлял 10 -34 секунды или около того, то есть сотую миллиардной триллионной триллионной секунды, она пережила невероятный всплеск расширения, известный как инфляция, во время которого само пространство расширялось быстрее скорости света. За это время Вселенная увеличилась вдвое по крайней мере в 90 раз, почти мгновенно превратившись из субатомного в размер мяча для гольфа.

Работа, направленная на понимание расширяющейся Вселенной, является результатом сочетания теоретической физики и прямых наблюдений астрономов. Однако в некоторых случаях астрономы не смогли увидеть прямых доказательств — таких как случай гравитационных волн, связанных с космическим микроволновым фоном, оставшимся излучением от Большого взрыва. Предварительное объявление об обнаружении этих волн в 2014 году было быстро отменено после того, как астрономы обнаружили, что обнаруженный сигнал можно объяснить пылью в Млечном Пути.

По данным НАСА, после инфляции рост Вселенной продолжался, но более медленными темпами. По мере расширения пространства Вселенная охлаждалась и образовывалась материя. Через одну секунду после Большого взрыва Вселенная была заполнена нейтронами, протонами, электронами, антиэлектронами, фотонами и нейтрино.

Связано: Что такое теория большого взрыва?

В течение первых трех минут существования Вселенной легкие элементы родились в процессе, известном как нуклеосинтез Большого взрыва.Температура снизилась со 100 нониллионов (10 32 ) Кельвина до 1 миллиарда (10 9 ) Кельвина, и протоны и нейтроны столкнулись с образованием дейтерия, изотопа водорода. Большая часть дейтерия объединилась в гелий, а также были произведены следы лития.

По данным Национального центра космических исследований Франции (Centre National d’Etudes Spatiales, CNES), в первые 380 000 лет или около того вселенная была слишком горячей для того, чтобы свет мог сиять. Тепло творения разбивало атомы вместе с достаточной силой, чтобы разбить их на плотную плазму, непрозрачный суп из протонов, нейтронов и электронов, который рассеивал свет, как туман.

По данным НАСА, примерно через 380 000 лет после Большого взрыва материя остыла настолько, что атомы могли образоваться в эпоху рекомбинации, что привело к образованию прозрачного электрически нейтрального газа. Это высвободило начальную вспышку света, появившуюся во время Большого взрыва, которую сегодня можно обнаружить как космическое микроволновое фоновое излучение. Однако после этого момента Вселенная погрузилась во тьму, поскольку никаких звезд или других ярких объектов еще не сформировалось.

Примерно через 400 миллионов лет после Большого взрыва Вселенная начала выходить из космических темных веков в эпоху реионизации.За это время, которое длилось более полумиллиарда лет, сгустки газа схлопнулись достаточно, чтобы сформировать первые звезды и галактики, энергичный ультрафиолетовый свет которых ионизировал и уничтожил большую часть нейтрального водорода.

Хотя расширение Вселенной постепенно замедлялось, поскольку материя во Вселенной притягивала себя через гравитацию, примерно через 5 или 6 миллиардов лет после Большого взрыва, по данным НАСА, таинственная сила, которая теперь называется темной энергией, начала ускорять расширение. Вселенной снова, явление, которое продолжается и сегодня.

Спустя 9 миллиардов лет после Большого взрыва родилась наша солнечная система.

Большой взрыв

Большой взрыв произошел не как взрыв, как обычно думают о подобных вещах, несмотря на то, что можно понять из его названия. Вселенная не расширялась в космос, поскольку космос не существовал до Вселенной, согласно НАСА. Вместо этого, лучше думать о Большом взрыве как о одновременном появлении пространства повсюду во Вселенной. Со времени Большого взрыва Вселенная не расширялась ни из одной точки — скорее, само пространство растягивалось и уносило с собой материю.

Поскольку Вселенная по своему определению включает в себя все пространство и время, какими мы ее знаем, НАСА заявляет, что модель Большого взрыва выходит за рамки модели Большого взрыва, чтобы сказать, во что Вселенная расширяется или что вызвало Большой взрыв. Хотя есть модели, которые строят предположения по поводу этих вопросов, ни одна из них еще не сделала реалистичных предсказаний, которые можно было бы проверить.

В 2014 году ученые из Гарвард-Смитсоновского центра астрофизики объявили, что они обнаружили слабый сигнал в космическом микроволновом фоне, который может быть первым прямым доказательством гравитационных волн, которые сами считаются «дымящейся пушкой» Большого взрыва.Результаты горячо обсуждались, и астрономы вскоре отказались от своих результатов, когда поняли, что пыль в Млечном Пути может объяснить их открытия. таинственная рябь

Шаровое скопление NGC 6397 содержит около 400 000 звезд и расположено на расстоянии примерно 7200 световых лет от нас в южном созвездии Ара. При предполагаемом возрасте 13,5 миллиардов лет он, вероятно, является одним из первых объектов Галактики, образовавшихся после Большого взрыва. (Изображение предоставлено Европейской южной обсерваторией)

Возраст

Возраст Вселенной в настоящее время оценивается примерно в 13 лет.8 миллиардов лет, плюс-минус 130 миллионов лет. Для сравнения, возраст Солнечной системы составляет всего около 4,6 миллиарда лет.

Эта оценка была получена на основе измерения состава вещества и плотности энергии во Вселенной. Это позволило исследователям вычислить, насколько быстро Вселенная расширялась в прошлом. Обладая этим знанием, они могли повернуть время вспять и экстраполировать, когда случился Большой взрыв. Время между тем и настоящим — это возраст Вселенной.

Структура

Ученые считают, что в самые ранние моменты существования Вселенной не было структуры, о которой можно было бы говорить, с почти равномерным распределением материи и энергии.По данным НАСА, тогда гравитационное притяжение небольших колебаний плотности материи привело к появлению огромной паутинообразной структуры звезд и пустоты, наблюдаемой сегодня. Плотные области притягивают все больше и больше материи за счет гравитации, и чем более массивными они становятся, тем больше материи они могут втягивать за счет гравитации, образуя звезды, галактики и более крупные структуры, известные как скопления, сверхскопления, волокна и стены с «большими стенами». тысяч галактик, достигающих в длину более миллиарда световых лет.Менее плотные области не росли, превращаясь в область, казалось бы, пустого пространства, называемого пустотами.

Content

Примерно 30 лет назад астрономы считали, что Вселенная почти полностью состоит из обычных атомов или «барионной материи», согласно НАСА. Однако в последнее время появилось все больше свидетельств того, что большинство ингредиентов, составляющих Вселенную, имеют формы, которые мы не видим.

Оказывается, атомы составляют всего 4,6 процента Вселенной.Из оставшегося 23 процента состоит из темной материи, которая, вероятно, состоит из одного или нескольких видов субатомных частиц, которые очень слабо взаимодействуют с обычной материей, а 72 процента состоит из темной энергии, которая, по-видимому, способствует ускоренному расширению Вселенная.

Когда дело доходит до знакомых нам атомов, по данным НАСА, водород составляет около 75 процентов, а гелий — около 25 процентов, а более тяжелые элементы составляют лишь крошечную часть атомов Вселенной.

Форма

Форма Вселенной и ее конечная или бесконечная протяженность зависят от борьбы между скоростью ее расширения и силой тяжести. Сила рассматриваемого притяжения частично зависит от плотности вещества во Вселенной.

Если плотность Вселенной превышает определенное критическое значение, тогда Вселенная «замкнута» и «положительно изогнута», как поверхность сферы. Это означает, что световые лучи, которые изначально параллельны, будут медленно сходиться, в конечном итоге пересекаться и возвращаться в исходную точку, если Вселенная просуществует достаточно долго.В таком случае, согласно НАСА, Вселенная не бесконечна, но не имеет конца, так же как площадь на поверхности сферы не бесконечна, но не имеет начала или конца, о которых можно было бы говорить. Вселенная в конечном итоге перестанет расширяться и начнет сжиматься, так называемое «большое сжатие».

Если плотность Вселенной меньше этой критической плотности, тогда геометрия пространства будет «открытой» и «отрицательно искривленной», как поверхность седла. Если так, то Вселенная не имеет границ и будет расширяться вечно.

Если плотность Вселенной в точности равна критической плотности, то, по данным НАСА, геометрия Вселенной «плоская» с нулевой кривизной, как лист бумаги. Если это так, Вселенная не имеет границ и будет расширяться вечно, но скорость расширения постепенно приблизится к нулю через бесконечное количество времени. Недавние измерения показывают, что Вселенная плоская с погрешностью всего 2 процента.

Возможно, что Вселенная в целом имеет более сложную форму, но при этом имеет другую кривизну.Например, Вселенная может иметь форму тора или бублика.

Расширяющаяся Вселенная

В 1920-х годах астроном Эдвин Хаббл обнаружил, что Вселенная не статична. Скорее, он расширялся; Находка, которая показала, что Вселенная, по-видимому, родилась в результате Большого взрыва.

После этого долгое время считалось, что гравитация материи во Вселенной наверняка замедлит расширение Вселенной. Затем, в 1998 году, наблюдения очень далеких сверхновых с помощью космического телескопа Хаббла показали, что давным-давно Вселенная расширялась медленнее, чем сегодня.Другими словами, расширение Вселенной не замедлялось из-за гравитации, а вместо этого необъяснимо ускорялось. Имя неизвестной силы, движущей это ускоряющееся расширение, — темная энергия, и она остается одной из величайших загадок в науке.

Дополнительная информация от авторов Space.com Нола Тейлор Редд и Элизабет Хауэлл.

.

Происхождение Вселенной Глава 20.3 Примечания. Что такое Вселенная? Вселенная состоит из всего существующего пространства, материи и энергии — сейчас, в прошлом,

Презентация на тему: «Происхождение Вселенной Примечания к главе 20.3. Что такое Вселенная? Вселенная состоит из всего пространства, материи и энергии, которые существуют — сейчас, в прошлом», — стенограмма презентации:

1 Происхождение Вселенной Глава 20.3 Примечания The Origin of the Universe Chapter 20.3 Notes

2 Что такое Вселенная? Вселенная состоит из всего пространства, материи и энергии, которые существуют — сейчас, в прошлом или в будущем. Это все физическое, что существует в пространстве и времени. Оно состоит в основном из пустого пространства. What is the Universe.

3 Вселенная расширяется В 1929 году американский астроном Эдвин Хаббл объявил, что Вселенная расширяется. Он основал свою теорию на спектральных линиях и заметил, что они почти всегда смещены в сторону красного конца спектра. Красное смещение объясняется эффектом Доплера. Эффект — это изменение наблюдаемой частоты волны при движении объекта или наблюдателя. Чем быстрее удаляется источник света, тем больше свет распространяется на более длинные волны и тем больше он смещается к красному концу спектра. The Universe is Expanding In 1929, American astronomer Edwin Hubble announced that the universe is expanding He based his theory on spectral lines and noticed that they were almost always shifted towards the red end of the spectrum The red shift is explained by the Doppler effect The Doppler effect is a change in the observed frequency of a wave when an object or observer is moving The faster a light source moves away, the more the light stretches to longer wavelengths, and the more it shifts toward the red end of the spectrum

4 Красное смещение по сравнению с синим смещением Когда объект приближается к нам, смещение происходит в сторону более коротких волн на синем конце спектра и называется синим смещением. Хаббл обнаружил, что у большинства галактик есть красные смещения, а у более удаленных галактик — еще большие красные смещения. красное смещение возникает из-за того, что галактики удаляются друг от друга, а Вселенная расширяется. Red shift vs Blue shift When an object is approaching us, the shift is toward shorter wavelengths at the spectrum’s blue end and is called blue shift Hubble found that most galaxies have red shifts and galaxies that are farther away have even greater red shifts He explained the red shift is occurring because galaxies are moving away from each other and the universe is expanding

5 Расширение подразумевает, что Вселенная была меньше Хотя галактики, которые расположены близко друг к другу, притягиваются друг к другу гравитацией, большинство галактик удаляются друг от друга. Если время шло в обратном направлении, как перематывается фильм, и все галактики удаляются от одной другое, это должно означать, что все галактики когда-то были очень близки друг к другу. Эта логика подразумевает, что Вселенная могла содержаться в чрезвычайно маленьком пространстве. Expansion Implies the Universe was Smaller Although galaxies that are close to each other are attracted to each other by gravity, most galaxies are moving away from one another If time was running backward, like a movie being rewound, and all galaxies are moving away from one another, this must mean that all galaxies were once very close to each other This logic implies that the universe might have been contained in an extremely small space

6 Теория большого взрыва Теория большого взрыва утверждает, что Вселенная началась с гигантского взрыва от 13 до 15 миллиардов лет назад. По оценкам ученых, Вселенная составляет около 13 лет.7 миллиардов лет Ничего не существовало до большого взрыва — ни времени, ни пространства. Из ничего возникла огромная система пространства, времени, материи и энергии, которая сейчас составляет Вселенную. Космическое фоновое излучение — это тусклые остатки излучения в микроволновом диапазоне. произошедший во время Большого взрыва В небе существует очень тусклый сигнал The Big Bang Theory The big bang theory states that the universe began with a gigantic explosion 13 billion to 15 billion years ago Scientists estimate the universe is about 13.7 billion years old Nothing existed before the big bang—no time and no space Out of nothingness came the vast system of space, time, matter, and energy that now makes up the universe Cosmic background radiation is the dim remnants of radiation at microwave wavelengths that was produced during the big bang A very dim signal exists in the sky

7 Предсказание будущего Вселенной Вселенная все еще расширяется, но, возможно, не вечно. Объединенная гравитация всей массы во Вселенной также притягивает Вселенную внутрь, в противоположном направлении расширения. Для Вселенной есть три возможных исхода: 1.2. Вселенная будет расширяться вечно 2. Расширение Вселенной будет постепенно замедляться, и размер Вселенной приблизится к пределу 3. Вселенная перестанет расширяться и начнет отступать от себя. Predicting the Future Universe The universe is still expanding, but it may not do so forever The combined gravity of all of the mass in the universe is also pulling the universe inward, in the opposite direction of expansion There are three possible outcomes for the universe: 1.The universe will keep expanding forever 2.The expansion of the universe will gradually slow down, and the universe will approach a limit in size 3.The universe will stop expanding and start to fall back on itself

8 Будущее Вселенной зависит от массы. Будущее Вселенной зависит от количества материи во Вселенной. Если массы недостаточно, гравитационная сила будет слишком слабой, чтобы остановить расширение, поэтому Вселенная будет расширяться вечно. является правильным количеством массы, расширение будет продолжать замедляться, но никогда не прекратится полностью.Если масса слишком велика, гравитация в конечном итоге преодолеет расширение, и Вселенная начнет сжиматься.Сжимающаяся Вселенная может схлопнуться до одной точки. в том, что называется большим кризисом The Future of the Universe Depends on Mass The future of the universe depends on the amount of matter in the universe If there is not enough mass, the gravitational force will be too weak to stop the expansion, so the universe will keep expanding forever If there is just the right amount of mass, the expansion will continue to slow down but will never stop completely If there is too much mass, the gravity will eventually overcome the expansion and the universe will start to contract A contracting universe could collapse to a single point in what is called the big crunch

10 Темная материя и теория относительности Во Вселенной больше материи, чем то, что видно — это называется темной материей. Темная материя может состоять из планет, черных дыр или коричневых карликов. Что это на самом деле и где находится, остается загадкой. 1916, Альберт Эйнштейн расширил теорию гравитации Ньютона, разработав общую теорию относительности. Масса искривляет пространство (представьте, как ваше тело изгибается как матрас). Более крупные галактики искажают пространство сильнее, чем звезды. Dark Matter & The Theory of Relativity There is more matter in the universe than what is visible— this is called dark matter Dark matter may consist of planets, black holes, or brown dwarfs What it really is and where it is located remains a mystery In 1916, Albert Einstein expanded on Newton’s theory of gravity by developing the general theory of relativity Mass curves space (think of your body curving a mattress) Larger galaxies distort space more than stars do

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *